Evaluation of Platelet Functional Activity in Healthy BALB/c Mice and in EMT-6 Breast Cancer Orthotopic Model

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Platelets, anuclear cell fragments circulating in the blood, can be considered as vascular wall and latent thrombosis sensors. However, the heterogeneity of normal platelet indicators is too large for the correct «reading» of information from these sensors. Therefore, it is necessary to fine-tune methods for assessing the functional state of mouse platelets in order to then check under controlled conditions how various pathological processes change the state of platelets. In this work, we adapted previously developed flow cytometry platelet functional activity tests for use in blood samples from BALB/c mice and evaluated changes in platelet status in an in vivo model of spontaneous metastatic breast cancer EMT-6. Continuous and endpoint flow cytometry were used. Platelet shape change, decreased GPIb antibody binding, P-selectin exposure, integrin activation, calcium mobilization, and phosphatidylserine exposure were observed. Several functional activity differences between human and murine platelets were obtained. First, according to all observed parameters, activation of mouse platelets in response to 2.5 µm of ADP was significantly weaker than activation in response to 200 µm of AYPGKF (PAR4 thrombin receptor agonist). Second, reversible activation of integrins and shape change were observed in response to ADP. The main difference between platelets of mice with a tumor was a significant decrease in their number when isolated from the blood. Additionally, some responses were diminished: binding of antibodies to GPIb, shape change, activation of integrins, and procoagulant response. The results indicate that a tumor in the terminal stage probably reduces the number of circulating platelets and causes their damage.

Full Text

Restricted Access

About the authors

A. A. Mishukov

Center for Theoretical Problems of Physicochemical Pharmacology of the RAS

Email: asve6nikova@yandex.ru
Russian Federation, Moscow

S. Gaur

Moscow Institute of Physics and Technology

Email: asve6nikova@yandex.ru
Russian Federation, Dolgoprudny

E.-I. A. Adamanskaya

Center for Theoretical Problems of Physicochemical Pharmacology of the RAS; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology

Email: asve6nikova@yandex.ru
Russian Federation, Moscow; Moscow

M. A. Panteleev

Center for Theoretical Problems of Physicochemical Pharmacology of the RAS; Moscow Institute of Physics and Technology; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology

Email: asve6nikova@yandex.ru
Russian Federation, Moscow; Dolgoprudny; Moscow

A. N. Sveshnikova

Center for Theoretical Problems of Physicochemical Pharmacology of the RAS; Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology, and Immunology

Author for correspondence.
Email: asve6nikova@yandex.ru
Russian Federation, Moscow; Moscow

References

  1. Mandel J, Casari M, Stepanyan M, Martyanov A, Deppermann C (2022) Beyond hemostasis: platelet innate immune interactions and thromboinflammation. Int J Mol Sci 23: 3868. https://doi.org/10.3390/ijms23073868
  2. Sveshnikova A, Stepanyan M, Panteleev M (2021) Platelet functional responses and signalling: the molecular relationship. Part 1: responses. Syst Biol Physiol Rep 1: 20–28. https://doi.org/10.52455/sbpr.01.202101014
  3. Bodrova VV, Shustova ON, Khaspekova SG, Mazurov AV (2021) Platelet reticulated forms, size indexes, and functional activity. Interactions in healthy volunteers. Platelets 1–6. https://doi.org/10.1080/09537104.2021.1922659
  4. Smyth SS, Mcever RP, Weyrich AS, Morrell CN, Hoffman MR, Arepally GM, French PA, Dauerman HL, Becker RC (2009) Platelet functions beyond hemostasis. J Thromb Haemost 7: 1759–1766. https://doi.org/10.1111/j.1538-7836.2009.03586.x
  5. Jirouskova M, Shet AS, Johnson GJ (2007) A guide to murine platelet structure, function, assays, and genetic alterations. J Thromb Haemost 5: 661–669. https://doi.org/10.1111/j.1538-7836.2007.02407.x
  6. Schmitt A, Guichard J, Massé J-M, Debili N, Cramer EM (2001) Of mice and men. Exp Hematol 29: 1295–1302. https://doi.org/10.1016/S0301-472X(01)00733-0
  7. Mangin PH, Gardiner EE, Nesbitt WS, Kerrigan SW, Korin N, Lam WA, Panteleev MA, for the Subcommittee on Biorheology (2020) In vitro flow based systems to study platelet function and thrombus formation: Recommendations for standardization: Communication from the SSC on Biorheology of the ISTH. J Thromb Haemost 18: 748–752. https://doi.org/10.1111/jth.14717
  8. Yakusheva AA, Butov KR, Bykov GA, Závodszky G, Eckly A, Ataullakhanov FI, Gachet C, Panteleev MA, Mangin PH (2022) Traumatic vessel injuries initiating hemostasis generate high shear conditions. Blood Adv 6: 4834–4846. https://doi.org/10.1182/bloodadvances.2022007550
  9. Lin H, Liu AP, Smith TH, Trejo J (2013) Cofactoring and dimerization of proteinase-activated receptors. Pharmacol Rev 65: 1198–1213. https://doi.org/10.1124/pr.111.004747
  10. Nayak MK, Dash A, Singh N, Dash D (2014) Aspirin delimits platelet life span by proteasomal inhibition. PLoS One 9: e105049. https://doi.org/10.1371/journal.pone.0105049
  11. Balkenhol J, Kaltdorf KV, Mammadova-Bach E, Braun A, Nieswandt B, Dittrich M, Dandekar T (2020) Comparison of the central human and mouse platelet signaling cascade by systems biological analysis. BMC Genom 21: 897. https://doi.org/10.1186/s12864-020-07215-4
  12. Sveshnikova AN, Tesakov IP, Kuznetsova SA, Shamova ЕМ (2024) Role of platelet activation in the development and metastasis of solid tumors. J Evol Biochem Phys 60: 211–227. https://doi.org/10.1134/S0022093024010150
  13. Lee AYY, Levine MN (2003) Venous thromboembolism and cancer: Risks and outcomes. Circulation 107: I-17–I-21. https://doi.org/10.1161/01.CIR.0000078466.72504.AC
  14. Falanga A, Marchetti M (2023) Cancer-associated thrombosis: Enhanced awareness and pathophysiologic complexity. J Thromb Haemost 21: 1397–1408. https://doi.org/10.1016/j.jtha.2023.02.029
  15. Yu L, Guo Y, Chang Z, Zhang D, Zhang S, Pei H, Pang J, Zhao ZJ, Chen Y (2021) Bidirectional interaction between cancer cells and platelets provides potential strategies for cancer therapies. Front Oncol 11: 764119. https://doi.org/10.3389/fonc.2021.764119
  16. Lee C, Lin Y, Lin C, Yen C, Shen C, Chang C, Hsieh S (2015) Pretreatment platelet count early predicts extrahepatic metastasis of human hepatoma. Liver Int 35: 2327–2336. https://doi.org/10.1111/liv.12817
  17. Golebiewska EM, Poole AW (2015) Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev 29: 153–162. https://doi.org/10.1016/j.blre.2014.10.003
  18. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119: 1420–1428. https://doi.org/10.1172/JCI39104
  19. Radziwon-Balicka A, Santos-Martinez MJ, Corbalan JJ, O’Sullivan S, Treumann A, Gilmer JF, Radomski MW, Medina C (2014) Mechanisms of platelet-stimulated colon cancer invasion: role of clusterin and thrombospondin 1 in regulation of the P38MAPK-MMP-9 pathway. Carcinogenesis 35: 324–332. https://doi.org/10.1093/carcin/bgt332
  20. Sabrkhany S, Griffioen AW, Oude Egbrink MGA (2011) The role of blood platelets in tumor angiogenesis. Biochem Biophys Acta Rev Cancer 1815: 189–196. https://doi.org/10.1016/j.bbcan.2010.12.001
  21. Plantureux L, Mège D, Crescence L, Dignat-George F, Dubois C, Panicot-Dubois L (2018) Impacts of cancer on platelet production, activation and education and mechanisms of cancer-associated thrombosis. Cancers 10: 441. https://doi.org/10.3390/cancers10110441
  22. Nie D, Lamberti M, Zacharek A, Li L, Szekeres K, Tang K, Chen Y, Honn KV (2000) Thromboxane A2 regulation of endothelial cell migration, angiogenesis, and tumor metastasis. Biochem Biophys Res Commun 267: 245–251. https://doi.org/10.1006/bbrc.1999.1840
  23. Heinmoller E, Weinel RJ, Heidtmann HH, Salge U, Seitz R, Schmitz I, Moller KM, Zirngibl H (1996) Studies on tumor-cell-induced platelet aggregation in human lung cancer cell lines. J Cancer Res Clin Oncol 122: 735–744. https://doi.org/10.1007/BF01209121
  24. Ruf W, Yokota N, Schaffner F (2010) Tissue factor in cancer progression and angiogenesis. Thromb Res 125: S36–S38. https://doi.org/10.1016/S0049-3848(10)70010-4
  25. Suzuki-Inoue K, Kato Y, Inoue O, Kaneko MK, Mishima K, Yatomi Y, Yamazaki Y, Narimatsu H, Ozaki Y (2007) Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem 282: 25993–26001. https://doi.org/10.1074/jbc.M702327200
  26. Martyanov AA, Tesakov IP, Khachatryan LA, An OI, Boldova AE, Ignatova AA, Koltsova EM, Korobkin J-JD, Podoplelova NA, Svidelskaya GS, Yushkova E, Novichkova GA, Eble JA, Panteleev MA, Kalinin DV, Sveshnikova AN (2023) Platelet functional abnormalities in pediatric patients with kaposiform hemangioendothelioma/Kasabach-Merritt phenomenon. Blood Adv 7: 4936–4949. https://doi.org/10.1182/bloodadvances.2022009590
  27. Xu Y, Ogose A, Kawashima H, Hotta T, Ariizumi T, Li G, Umezu H, Endo N (2011) High-level expression of podoplanin in benign and malignant soft tissue tumors: Immunohistochemical and quantitative real-time RT-PCR analysis. Oncol Rep 25: 599–607. https://doi.org/10.3892/or.2011.1141
  28. Korniluk A, Kemona H, Dymicka-Piekarska V (2014) Multifunctional CD40L: pro- and anti-neoplastic activity. Tumor Biol 35: 9447–9457. https://doi.org/10.1007/s13277-014-2407-x
  29. Dovizio M, Ballerini P, Fullone R, Tacconelli S, Contursi A, Patrignani P (2020) Multifaceted functions of platelets in cancer: From tumorigenesis to liquid biopsy tool and drug delivery system. Int J Mol Sci 21: 9585. https://doi.org/10.3390/ijms21249585
  30. Kovalenko TA, Panteleev MA, Sveshnikova AN (2019) The role of tissue factor in metastasising, neoangiogenesis and hemostasis in cancer. Oncohematology 14: 70–85. https://doi.org/10.17650/1818-8346-2019-14-2-70-85
  31. Tavera-Mendoza LE, Brown M (2017) A less invasive method for orthotopic injection of breast cancer cells into the mouse mammary gland. Lab Anim 51: 85–88. https://doi.org/10.1177/0023677216640706
  32. Yang Y, Yang HH, Hu Y, Watson PH, Liu H, Geiger TR, Anver MR, Haines DC, Martin P, Green JE, Lee MP, Hunter KW, Wakefield LM (2017) Immunocompetent mouse allograft models for development of therapies to target breast cancer metastasis. Oncotarget 8: 30621–30643. https://doi.org/10.18632/oncotarget.15695
  33. Bokova UA, Tretyakova MS, Schegoleva AA, Denisov EV (2023) In vivo models in cancer research. Usp Mol Onkol 10: 8–16. https://doi.org/10.17650/2313-805X-2023-10-2-8-16
  34. Martyanov AA, Morozova DS, Sorokina MA, Filkova AA, Fedorova DV, Uzueva SS, Suntsova EV, Novichkova GA, Zharkov PA, Panteleev MA, Sveshnikova AN (2020) Heterogeneity of integrin αIIbβ3 function in pediatric immune thrombocytopenia revealed by continuous flow cytometry analysis. Int J Mol Sci 21: 3035. https://doi.org/10.3390/ijms21093035
  35. Martyanov AA, Boldova AE, Stepanyan MG, An OI, Gur’ev AS, Kassina DV, Volkov AY, Balatskiy AV, Butylin AA, Karamzin SS, Filimonova EV, Tsarenko SV, Roumiantsev SA, Rumyantsev AG, Panteleev MA, Ataullakhanov FI, Sveshnikova AN (2022) Longitudinal multiparametric characterization of platelet dysfunction in COVID-19: Effects of disease severity, anticoagulation therapy and inflammatory status. Thromb Res 211: 27–37. https://doi.org/10.1016/j.thromres.2022.01.013
  36. Ignatova AA, Ponomarenko EA, Polokhov DM, Suntsova EV, Zharkov PA, Fedorova DV, Balashova EN, Rudneva AE, Ptushkin VV, Nikitin EA, Shcherbina A, Maschan AA, Novichkova GA, Panteleev MA (2019) Flow cytometry for pediatric platelets. Platelets 30: 428–437. https://doi.org/10.1080/09537104.2018.1513473
  37. Ignatova AA, Demina IA, Ptushkin VV, Khaspekova SG, Shustova ON, Pankrashkina MM, Ryabykh AA, Obydennyi SI, Strelkova OS, Polokhov DM, Seregina EA, Poletaev AV, Ataullakhanov FI, Kireev II, Mazurov AV, Maschan AA, Novichkova GA, Panteleev MA (2019) Evolution of platelet function in adult patients with chronic immune thrombocytopenia on romiplostim treatment. Br J Haematol 187: e38–e42. https://doi.org/10.1111/bjh.16164
  38. George R, Bhatt A, Narayani J, Thulaseedharan JV, Sivadasanpillai H, Tharakan JA (2016) Enhanced P-selectin expression on platelet-a marker of platelet activation, in young patients with angiographically proven coronary artery disease. Mol Cell Biochem 419: 125–133. https://doi.org/10.1007/s11010-016-2756-4
  39. Nakanishi-Matsui M, Zheng Y-W, Sulciner DJ, Weiss EJ, Ludeman MJ, Coughlin SR (2000) PAR3 is a cofactor for PAR4 activation by thrombin. Nature 404: 609–613. https://doi.org/10.1038/35007085
  40. Stepanyan MG, Filkova AA, Garzon Dasgupta AK, Martyanov AA, Sveshnikova AN (2021) Platelet activation through GPVI receptor: Variability of the response. Biochem (Mosc) Suppl Ser A Membr Cell Biol 15: 73–81. https://doi.org/10.1134/S1990747820050074
  41. Langford DJ, Bailey AL, Chanda ML, Clarke SE, Drummond TE, Echols S, Glick S, Ingrao J, Klassen-Ross T, LaCroix-Fralish ML, Matsumiya L, Sorge RE, Sotocinal SG, Tabaka JM, Wong D, Van Den Maagdenberg AMJM, Ferrari MD, Craig KD, Mogil JS (2010) Coding of facial expressions of pain in the laboratory mouse. Nat Methods 7: 447–449. https://doi.org/10.1038/nmeth.1455
  42. Martyanov A, Panteleev M (2021) Platelet functional responses and signalling: The molecular relationship. Part 2: Receptors. Syst Biol Physiol Rep 1: 13–30. https://doi.org/10.52455/sbpr.01.202103013
  43. Sveshnikova AN, Ataullakhanov FI, Panteleev MA (2015) Compartmentalized calcium signaling triggers subpopulation formation upon platelet activation through PAR1. Mol Biosyst 11: 1052–1060. https://doi.org/10.1039/c4mb00667d
  44. Podoplelova NA, Nechipurenko DY, Ignatova AA, Sveshnikova AN, Panteleev MA (2021) Procoagulant platelets: Mechanisms of generation and action. Hamostaseologie 41: 146–153. https://doi.org/10.1055/a-1401-2706
  45. Kaneva VN, Martyanov AA, Morozova DS, Panteleev MA, Sveshnikova AN (2019) Platelet integrin αIIbβ3: mechanisms of activation and clustering; involvement into the formation of the thrombus heterogeneous structure. Biochemistry (Mosc) Suppl Ser A Membr Cell Biol 13: 97–110. https://doi.org/10.1134/S1990747819010033
  46. Ma Y ‐Q, Qin J, Plow EF (2007) Platelet integrin αIIbβ3: Activation mechanisms. J Thromb Haemost 5: 1345–1352. https://doi.org/10.1111/j.1538-7836.2007.02537.x
  47. Ponomarenko EA, Ignatova AA, Polokhov DM, Khismatullina RD, Kurilo DS, Shcherbina A, Zharkov PA, Maschan AA, Novichkova GA, Panteleev MA (2022) Healthy pediatric platelets are moderately hyporeactive in comparison with adults’ platelets. Platelets 33: 727–734. https://doi.org/10.1080/09537104.2021.1981848
  48. Ohlmann P, Hechler B, Cazenave J-P, Gachet C (2004) Measurement and manipulation of [Ca2+]i in suspensions of platelets and cell cultures. Methods Mol Biol 273: 229–250. https://doi.org/10.1385/1-59259-783-1:229
  49. Ohlmann P, Eckly A, Freund M, Cazenave JP, Offermanns S, Gachet C (2000) ADP induces partial platelet aggregation without shape change and potentiates collagen-induced aggregation in the absence of Galphaq. Blood 96: 2134–2139. https://doi.org/10.1182/blood.V96.6.2134
  50. Aurbach K, Spindler M, Haining EJ, Bender M, Pleines I (2019) Blood collection, platelet isolation and measurement of platelet count and size in mice-a practical guide. Platelets 30: 698–707. https://doi.org/10.1080/09537104.2018.1528345
  51. Rudakova EV, Boltneva NP, Makhaeva GF (2011) Comparative analysis of esterase activities of human, mouse, and rat blood. Bull Exp Biol Med 152: 73–75. https://doi.org/10.1007/s10517-011-1457-y
  52. Montague SJ, Andrews RK, Gardiner EE (2018) Mechanisms of receptor shedding in platelets. Blood 132: 2535–2545. https://doi.org/10.1182/blood-2018-03-742668
  53. Kawano T, Hisada Y, Grover SP, Schug WJ, Paul DS, Bergmeier W, Mackman N (2023) Decreased platelet reactivity and function in a mouse model of human pancreatic cancer. Thromb Haemost 123: 501–509. https://doi.org/10.1055/s-0043-1761419
  54. Carlsson K, Freskgård PO, Persson E, Carlsson U, Svensson M (2003) Probing the interface between factor Xa and tissue factor in the quaternary complex tissue factor-factor VIIa-factor Xa-tissue factor pathway inhibitor. Eur J Biochem 270: 2576–2582. https://doi.org/10.1046/j.1432-1033.2003.03625.x
  55. Jo EJ, Bae E, Yoon J-H, Kim JY, Han JS (2021) Comparison of murine retroorbital plexus and facial vein blood collection to mitigate animal ethics issues. Lab Anim Res 37: 12. https://doi.org/10.1186/s42826-021-00090-4

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Overall characteristics of the orthotopic in vivo model of EMT-6 breast cancer: (a) - EMT-6 tumour growth in the experiments performed, mean values ± SD; Comparison of final tumour mass (b), final tumour volume (c) and number of superficial lung metastases in mice (d) in the two experiments performed, Student's t-test with Welch's correction, ns - p > 0.05, * - p < 0.05; (e) - kinetics of change in mouse weight normalised to day 0 and tumour size, mean values from two experiments ± standard deviation; (f) - kinetics of change in pain/distress index and tumour growth rate, mean values ± standard deviation.

Download (298KB)
3. Fig. 2. Results of end-point cytometry of platelets from healthy and tumour-bearing EMT-6 mice: (a) - concentration of platelets isolated from whole blood of healthy and tumour-bearing mice, Welch's parametric test, p < 0.001; (b) - median direct light scattering as a parameter of platelet size, Welch's parametric test, p < 0. 0001; P-selectin exposure (c), decreased actin binding to GPIb (d) and increased percentage of annexin V-positive platelets (e) upon platelet activation by 2.5 μM ADP, a combination of 2.5 μM ADP and 250 μg/ml fucoidan, 200 μM AYPGKF or 40 nM thrombin. Two-factor analysis of variance with Sidak's multiple comparisons, ns - p > 0.05, ** - p < 0.01, **** - p < 0.001.

Download (282KB)
4. Fig. 3. Results of continuous flow cytometry of platelets. Changes in free Ca2+ ion levels (a), fibrinogen binding (b) and platelet shape change (c) upon activation (using 0.5 μM ADP as an example), mean values ± standard deviation; (d) - free calcium levels in resting platelets, Welch's parametric test, * - p < 0. 05. Calcium mobilisation (e), fibrinogen binding (f) and shape change (g) upon activation of platelets from healthy mice (white) and EMT-6 tumour-bearing mice (grey) by ADP (0.5 and 2.5 μM), AYPGKF (200 μM), fucoidan sequence (250 μg/ml) and ADP (2.5 μM), and thrombin (40 nM). Two-factor analysis of variance with Sidak's multiple comparisons, ns - p > 0.05, ** - p < 0.01, *** and **** - p < 0.001.

Download (481KB)

Copyright (c) 2025 Russian Academy of Sciences