The Impact of Febrile Seizures on Synaptic Transmission in the Hippocampus of Rats with Freezing-Induced Focal Cortical Dysplasia
- Authors: Postnikova T.Y.1, Zaitsev A.V.1
-
Affiliations:
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
- Issue: Vol 111, No 4 (2025)
- Pages: 581-593
- Section: EXPERIMENTAL ARTICLES
- URL: https://edgccjournal.org/0869-8139/article/view/680897
- DOI: https://doi.org/10.31857/S0869813925040029
- EDN: https://elibrary.ru/UFKCTL
- ID: 680897
Cite item
Abstract
Febrile seizures (FS) in early childhood can lead to the development of epilepsy; however, in most cases, they resolve without consequences. The neurophysiological mechanisms that protect the brain from the effects of FS remain poorly understood. It is also known that the risk of epilepsy significantly increases if a child has congenital abnormalities in the structure of the cerebral cortex. In this study, we examined functional changes in the hippocampus of young rats subjected to FS on the 10th postnatal day (P10) with freezing-induced focal cortical dysplasia (FCD) on P0. Experiments were conducted on three groups of animals: 1) control group (Ctrl) – rats without FS and FCD; 2) FS group – rats subjected to hyperthermia-induced FS on P10; 3) FS+FCD group – rats with cortical freezing on P0 and FS on P10. Using recordings of local synaptic potentials in the CA1 region of the hippocampus, we found that FS led to significant changes in synaptic transmission. In the FS group, there was an increase in the threshold for population spike generation, a decrease in the synaptic transmission efficacy ratio, and an increase in the paired-pulse ratio. These changes indicate reduced activity of CA3-CA1 glutamatergic synapses, which may represent a compensatory response preventing epileptogenesis. However, in the FS+FCD group, such compensatory changes were absent: synaptic transmission parameters did not differ from those in the control group. This suggests that FCD impedes the activation of protective mechanisms in the hippocampus in response to FS. Thus, the presence of cortical dysplasia may increase the risk of epilepsy following FS by 20 blocking natural compensatory processes. Our results highlight the importance of studying the interaction between congenital cortical developmental abnormalities and the consequences of FS for understanding the mechanisms of epileptogenesis.
Full Text

About the authors
T. Y. Postnikova
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
Author for correspondence.
Email: tapost2@mail.ru
Russian Federation, St. Petersburg
A. V. Zaitsev
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
Email: tapost2@mail.ru
Russian Federation, St. Petersburg
References
- Leung AKC, Hon KL, Leung TNH (2018) Febrile seizures: An overview. Drugs Context 1–12. https://doi.org/10.7573/dic.212536
- Vestergaard M, Pedersen CB, Christensen J, Madsen KM, Olsen J, Mortensen PB (2005) Febrile seizures and risk of schizophrenia. Schizophr Res 73: 343–349. https://doi.org/10.1016/j.schres.2004.07.004
- Bertelsen EN, Larsen JT, Petersen L, Christensen J, Dalsgaard S (2016) Childhood Epilepsy, Febrile Seizures, and Subsequent Risk of ADHD. Pediatrics 138(2): e20154654. https://doi.org/10.1542/peds.2015-4654
- Civan AB, Ekici A, Havali C, Kiliç N, Bostanci M (2022) Evaluation of the risk factors for recurrence and the development of epilepsy in patients with febrile seizure. Arq Neuropsiquiatr 80: 779–785. https://doi.org/10.1055/s-0042-1755202
- Nelson KB, Ellenberg JH (1976) Predictors of Epilepsy in Children Who Have Experienced Febrile Seizures. New Engl J Med 295: 1029–1033. https://doi.org/10.1056/nejm197611042951901
- Barkovich AJ, Dobyns WB, Guerrini R (2015) Malformations of cortical development and epilepsy. Cold Spring Harb Perspect Med 5: a022392. https://doi.org/10.1101/cshperspect.a022392
- Fauser S, Huppertz H-J, Bast T, Strobl K, Pantazis G, Altenmueller D-M, Feil B, Rona S, Kurth C, Rating D, Korinthenberg R, Steinhoff BJ, Volk B, Schulze-Bonhage A (2006) Clinical characteristics in focal cortical dysplasia: А retrospective evaluation in a series of 120 patients. Brain 129: 1907–1916. https://doi.org/10.1093/brain/awl133
- Hesdorffer DC, Chan S, Tian H, Allen Hauser W, Dayan P, Leary LD, Hinton VJ (2008) Are MRI-detected brain abnormalities associated with febrile seizure type? Epilepsia 49: 765–771. https://doi.org/10.1111/j.1528-1167.2007.01459.x
- Barkovich AJ, Dobyns WB, Guerrini R (2015) Malformations of cortical development and epilepsy. Cold Spring Harb Perspect Med 5: a022392. https://doi.org/10.1101/cshperspect.a022392
- Dubé CM, Ravizza T, Hamamura M, Zha Q, Keebaugh A, Fok K, Andres AL, Nalcioglu O, Obenaus A, Vezzani A, Baram TZ (2010) Epileptogenesis provoked by prolonged experimental febrile seizures: Мechanisms and biomarkers. J Neurosci 30: 7484–7494. https://doi.org/10.1523/JNEUROSCI.0551-10.2010
- Baram TZ, Gerth A, Schultz L (1997) Febrile seizures: Аn appropriate-aged model suitable for long-term studies. Brain Res Dev Brain Res 98: 265–270. https://doi.org/10.1016/s0165-3806(96)00190-3
- Griflyuk AV, Postnikova TY, Zaitsev AV (2024) Animal Models of Febrile Seizures: Limitations and Recent Advances in the Field. Cells 13(22): 1895. https://doi.org/10.3390/cells13221895
- Dvorák K, Feit J (1977) Migration of neuroblasts through partial necrosis of the cerebral cortex in newborn rats-contribution to the problems of morphological development and developmental period of cerebral microgyria. Histological and autoradiographical study. Acta Neuropathol 38: 203–212. https://doi.org/10.1007/BF00688066
- Scantlebury MH, Gibbs SA, Foadjo B, Lema P, Psarropoulou C, Carmant L (2005) Febrile seizures in the predisposed brain: A new model of temporal lobe epilepsy. Ann Neurol 58: 41–49. https://doi.org/10.1002/ana.20512
- Scantlebury MH, Ouellet P-L, Psarropoulou C, Carmant L (2004) Freeze lesion-induced focal cortical dysplasia predisposes to atypical hyperthermic seizures in the immature rat. Epilepsia 45: 592–600. https://doi.org/10.1111/j.0013-9580.2004.51503.x
- Griflyuk AV, Postnikova TY, Malkin SL, Zaitsev AV (2023) Alterations in Rat Hippocampal Glutamatergic System Properties after Prolonged Febrile Seizures. Int J Mol Sci 24: 16875. https://doi.org/10.3390/ijms242316875
- Griflyuk AV, Postnikova TY, Zaitsev AV (2022) Prolonged Febrile Seizures Impair Synaptic Plasticity and Alter Developmental Pattern of Glial Fibrillary Acidic Protein (GFAP)-Immunoreactive Astrocytes in the Hippocampus of Young Rats. Int J Mol Sci 23: 12224. https://doi.org/10.3390/ijms232012224
- Diespirov GP, Postnikova TY, Griflyuk AV, Kovalenko AA, Zaitsev AV (2023) Alterations in the Properties of the Rat Hippocampus Glutamatergic System in the Lithium-Pilocarpine Model of Temporal Lobe Epilepsy. Biochemistry (Moscow) 88: 353–363. https://doi.org/10.1134/S0006297923030057
- Dvorák K, Feit J (1977) Migration of neuroblasts through partial necrosis of the cerebral cortex in newborn rats-contribution to the problems of morphological development and developmental period of cerebral microgyria. Histological and autoradiographical study. Acta Neuropathol 38: 203–212. https://doi.org/10.1007/BF00688066
- Postnikova TY, Griflyuk AV, Amakhin DV, Kovalenko AA, Soboleva EB, Zubareva OE, Zaitsev AV (2021) Early Life Febrile Seizures Impair Hippocampal Synaptic Plasticity in Young Rats. Int J Mol Sci 22: 8218. https://doi.org/10.3390/ijms22158218
- Postnikova TY, Amakhin DV, Trofimova AM, Smolensky IV, Zaitsev AV (2019) Changes in Functional Properties of Rat Hippocampal Neurons Following Pentylenetetrazole-induced Status Epilepticus. Neuroscience 399: 103-116. https://doi.org/10.1016/j.neuroscience.2018.12.029
- Abegg MH, Savic N, Ehrengruber MU, McKinney RA, Gähwiler BH (2004) Epileptiform activity in rat hippocampus strengthens excitatory synapses. J Physiol 554: 439–448. https://doi.org/10.1113/jphysiol.2003.052662
- Müller L, Tokay T, Porath K, Köhling R, Kirschstein T (2013) Enhanced NMDA receptor-dependent LTP in the epileptic CA1 area via upregulation of NR2B. Neurobiol Dis 54: 183–193. https://doi.org/10.1016/j.nbd.2012.12.011
- Ólafsdóttir HF, Bush D, Barry C (2018) The Role of Hippocampal Replay in Memory and Planning. Current Biol 28: R37–R50. https://doi.org/10.1016/j.cub.2017.10.073
- Bartsch T, Wulff P (2015) The hippocampus in aging and disease: From plasticity to vulnerability. Neuroscience 309: 1–16. https://doi.org/10.1016/j.neuroscience.2015.07.084
- Mathern GW, Adelson PD, Cahan LD, Leite JP (2002) Hippocampal neuron damage in human epilepsy: Meyer’s hypothesis revisited. Prog Brain Res 135: 237–251. https://doi.org/10.1016/s0079-6123(02)35023-4
- Toth Z, Yan X-XX, Haftoglou S, Ribak CE, Baram TZ (1998) Seizure-induced neuronal injury: Vulnerability to febrile seizures in an immature rat model. J Neurosci 18: 4285–4294. https://doi.org/10.1523/JNEUROSCI.18-11-04285.1998
- Lewis DV, Voyvodic J, Shinnar S, Chan S, Bello JA, Moshé SL, Nordli DR, Frank LM, Pellock JM, Hesdorffer DC, Deng X, Sun S (2024) Hippocampal sclerosis and temporal lobe epilepsy following febrile status epilepticus: The FEBSTAT study. Epilepsia 65: 1568–1580. https://doi.org/10.1111/epi.17979
- Sokol DK, Demyer WE, Edwards-Brown M, Sanders S, Garg B (2003) From swelling to sclerosis: Acute change in mesial hippocampus after prolonged febrile seizure. Seizure 12: 237–240. https://doi.org/10.1016/s1059-1311(02)00195-4
- Peng S-J, Hsieh KL-C, Lin Y-K, Tsai M-L, Wong T-T, Chang H (2021) Febrile seizures reduce hippocampal subfield volumes but not cortical thickness in children with focal onset seizures. Epilepsy Res 179: 106848. https://doi.org/10.1016/j.eplepsyres.2021.106848
- Cho K-O, Lybrand ZR, Ito N, Brulet R, Tafacory F, Zhang L, Good L, Ure K, Kernie SG, Birnbaum SG, Eisch AJ, Hsieh J (2015) Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat Commun 6: 6606. https://doi.org/10.1038/ncomms7606
- Postnikova TY, Griflyuk AV, Zhigulin AS, Soboleva EB, Barygin OI, Amakhin DV, Zaitsev AV (2023) Febrile Seizures Cause a Rapid Depletion of Calcium-Permeable AMPA Receptors at the Synapses of Principal Neurons in the Entorhinal Cortex and Hippocampus of the Rat. Int J Mol Sci 24: 12621. https://doi.org/10.3390/ijms241612621
- Crespo M, León-Navarro DA, Martín M (2021) Glutamatergic System is Affected in Brain from an Hyperthermia-Induced Seizures Rat Model. Cell Mol Neurobiol 42(5): 1501–1521. https://doi.org/10.1007/s10571-021-01041-2
- Zaitsev AV, Smolensky IV, Jorratt P, Ovsepian SV (2020) Neurobiology, Functions, and Relevance of Excitatory Amino Acid Transporters (EAATs) to Treatment of Refractory Epilepsy. CNS Drugs 34: 1089–1103. https://doi.org/10.1007/s40263-020-00764-y
- Gonzalez-Ramirez M, Salgado-Ceballos H, Orozco-Suarez SA, Rocha L (2009) Hyperthermic seizures and hyperthermia in immature rats modify the subsequent pentylenetetrazole-induced seizures. Seizure 18: 533–536. https://doi.org/10.1016/j.seizure.2009.04.011
- Scott RC (2014) Consequences of febrile seizures in childhood. Curr Opin Pediatr 26: 662–667. https://doi.org/10.1097/MOP.0000000000000153
- Leventer RJ, Guerrini R, Dobyns WB (2008) Malformations of cortical development and epilepsy. Dialogues Clin Neurosci 10: 47–62. https://doi.org/10.31887/DCNS.2008.10.1/rjleventer
- Barkovich AJ, Dobyns WB, Guerrini R (2015) Malformations of cortical development and epilepsy. Cold Spring Harb Perspect Med 5: a022392. https://doi.org/10.1101/cshperspect.a022392
- Barkovich AJ (2010) Current concepts of polymicrogyria. Neuroradiology 52: 479–487. https://doi.org/10.1007/s00234-009-0644-2
- Parrini E, Conti V, Dobyns WB, Guerrini R (2016) Genetic basis of brain malformations. Mol Syndromol 7: 220–233. https://doi.org/10.1159/000448639
- Williams AJ, Zhou C, Sun Q-Q (2016) Enhanced burst-suppression and disruption of local field potential synchrony in a mouse model of focal cortical dysplasia exhibiting spike-wave seizures. Front Neural Circuits 10: 93. https://doi.org/10.3389/fncir.2016.00093
- Gibbs SA, Scantlebury MH, Awad P, Lema P, Essouma JB, Parent M, Descarries L, Carmant L (2008) Hippocampal atrophy and abnormal brain development following a prolonged hyperthermic seizure in the immature rat with a focal neocortical lesion. Neurobiol Dis 32: 176–182. https://doi.org/10.1016/j.nbd.2008.07.005
- Jacobs KM, Gutnick MJ, Prince DA (1996) Hyperexcitability in a Model of Cortical Maldevelopment. Cerebral Cortex 6: 514–523. https://doi.org/10.1093/cercor/6.3.514
- Jacobs KM, Hwang BJ, Prince DA (1999) Focal epileptogenesis in a rat model of polymicrogyria. J Neurophysiol 81: 159–173. https://doi.org/10.1152/jn.1999.81.1.159
- Luhmann HJ, Raabe K, Qü M, Zilles K (1998) Characterization of neuronal migration disorders in neocortical structures: Extracellular in vitro recordings. Eur J Neuroscie 10: 3085–3094. https://doi.org/10.1046/j.1460-9568.1998.00311.x
- Jacobs KM (1999) Experimental Microgyri Disrupt the Barrel Field Pattern in Rat Somatosensory Cortex. Cerebral Cortex 9: 733–744. https://doi.org/10.1093/cercor/9.7.733
- Jacobs KM, Kharazia VN, Prince DA (1999) Mechanisms underlying epileptogenesis in cortical malformations. Epilepsy Res 36: 165–188. https://doi.org/10.1016/S0920-1211(99)00050-9
- Zsombok A, Jacobs KM (2007) Postsynaptic currents prior to onset of epileptiform activity in rat microgyria. J Neurophysiol 98: 178–186. https://doi.org/10.1152/JN.00106.2007
- Jacobs KM, Prince DA (2005) Excitatory and inhibitory postsynaptic currents in a rat model of epileptogenic microgyria. J Neurophysiol 93: 687–696. https://doi.org/10.1152/JN.00288.2004
- Jin X, Jiang K, Prince DA (2014) Excitatory and inhibitory synaptic connectivity to layer V fast-spiking interneurons in the freeze lesion model of cortical microgyria. J Neurophysiol 112: 1703–1713. https://doi.org/10.1152/JN.00854.2013
- Hanson E, Danbolt NC, Dulla CG (2016) Astrocyte membrane properties are altered in a rat model of developmental cortical malformation but single-cell astrocytic glutamate uptake is robust. Neurobiol Dis 89: 157–168. https://doi.org/10.1016/j.nbd.2016.02.012
- González-Martínez JA, Ying Z, Prayson R, Bingaman W, Najm I (2011) Glutamate clearance mechanisms in resected cortical dysplasia: Labor Investigation. J Neurosurg 114: 1195–1202. https://doi.org/10.3171/2010.10.JNS10715
- French JA, Williamson PD, Thadani VM, Darcey TM, Mattson RH, Spencer SS, Spencer DD (1993) Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann Neurol 34: 774–780. https://doi.org/10.1002/ana.410340604
- Theodore WH, Bhatia S, Hatta J, Fazilat S, DeCarli C, Bookheimer SY, Gaillard WD (1999) Hippocampal atrophy, epilepsy duration, and febrile seizures in patients with partial seizures. Neurology 52: 132–136. https://doi.org/10.1212/wnl.52.1.132
Supplementary files
