Narrowband multispectral terahertz radiation source on the base of RbAP molecular crystal and metamaterial tunable filter

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper investigates a new type of terahertz radiation source based on a molecular crystal of rubidium hydrophthalate (RbAP) and a tunable metamaterial that performs the function of a filter. The high Q-factor of the vibrational response of the RbAP crystal lattice in the terahertz frequency range allows the generation of narrowband terahertz radiation simultaneously at several frequencies with high spectral brightness and peak power. The crystal is excited by single femtosecond laser pulses. Switching between the individual generated spectral lines is realized using a planar metamaterial, the absorption lines of which depend on the polarization of the radiation incident on it. The developed source allows for dynamic restructuring of the spectral line of radiation, which makes it more versatile and efficient compared to traditional narrow-band sources, such as, for example, quantum cascade lasers.

全文:

受限制的访问

作者简介

А. Sinko

Lomonosov Moscow State University; National Research Center “Kurchatov Institute”

编辑信件的主要联系方式.
Email: as.sinjko@physics.msu.ru
俄罗斯联邦, Moscow; Moscow

N. Kozlova

National Research Center “Kurchatov Institute”

Email: as.sinjko@physics.msu.ru
俄罗斯联邦, Moscow

V. Manomenova

National Research Center “Kurchatov Institute”

Email: as.sinjko@physics.msu.ru
俄罗斯联邦, Moscow

Е. Rudneva

National Research Center “Kurchatov Institute”

Email: as.sinjko@physics.msu.ru
俄罗斯联邦, Moscow

А. Voloshin

National Research Center “Kurchatov Institute”; Mendeleev Russian University of Chemical Technology; National University of Science and Technology “MISIS”

Email: as.sinjko@physics.msu.ru
俄罗斯联邦, Moscow; Moscow; Moscow

N. Novikova

National Research Center “Kurchatov Institute”

Email: as.sinjko@physics.msu.ru
俄罗斯联邦, Moscow

Ph. Kozhevnikov

Lomonosov Moscow State University

Email: as.sinjko@physics.msu.ru
俄罗斯联邦, Moscow

М. Konnikova

Lomonosov Moscow State University; National Research Center “Kurchatov Institute”

Email: as.sinjko@physics.msu.ru
俄罗斯联邦, Moscow; Moscow

А. Shkurinov

Lomonosov Moscow State University; National Research Center “Kurchatov Institute”

Email: as.sinjko@physics.msu.ru
俄罗斯联邦, Moscow; Moscow

参考

  1. Dexheimer S.L. (ed.) Terahertz Spectroscopy: Principles and Applications. Boca Raton: CRC press, 2017.
  2. Jansen C., Wietzke S., Peters O., Scheller M., Vieweg N., Salhi M., Krumbholz N., Jördens C., Hochrein T., Koch M. //Appl. Opt. 2010. V. 49. № 19. P. E48.
  3. Fukunaga K. // THz Technology Applied to Cultural Heritage in Practice. Tokyo: Springer, 2016.
  4. Smolyanskaya O.A., Chernomyrdin N.V., Konovko A.A., Zaytsev K.I., Ozheredov I.A., Cherkasova O.P., Nazarov M.M., Guillet J.-P., Kozlov S.A., Kistenev Yu. V., Coutaz J.-L., et al. // Prog. Quantum Electron. 2018. V. 62. P. 1.
  5. Nanni E.A., Huang W.R., Hong K.-H., Ravi K., Fallahi A., Moriena G., Dwayne Miller R., Kärtner F.X. // Nat. Commun. 2015. V. 6. № 1. P. 8486.
  6. Udina M., Cea T., Benfatto L. // Phys. Rev. B. 2019. V. 100. № 16. P. 165131.
  7. Kejalakshmy N., Srinivasan K. // J. Phys. D Appl. Phys. 2003. V. 36. № 15. P. 1778.
  8. Беликова Г.С., Беляев Л.М., Головей М.П., Писаревский Ю.В., Сильвестрова И.М., Турская Т.И. // Кристаллография. 1974. Т. 19. № 3. С. 566.
  9. Беляев Л.М., Беликова Г.С., Гильварг А.Б., Сильвестрова И.М. // Кристаллография. 1969. Т. 14. № 4. С. 645.
  10. Barsukova M., Belikova G., Belyaev L., Boiko V., Gil’varg A., Pikuz S., Faenov A., Chugunov A. // Instrum. Exp. Tech. 1980. V. 23. № 4. P. 1028.
  11. Shujun Z., Jihua X., Zhilin X., Wenhao W. // Nucl. Fusion Plasma Phys. 1993. V. 13. № 1. P. 61.
  12. Yamashita K., Watanabe M., Matsudo O., Yamazaki J., Hatsukade I., Ishigami T., Takahama S., Tamura K., Ohtani M. // Rev. Sci. Instrum. 1992. V. 63. № 1. P. 1217.
  13. Mavrin B.N., Koldaeva M.V., Zakalyukin R.M., Turskaya T.N. // Opt. Spectrosc. 2006. V. 100. P. 862.
  14. Kaminskii A.A., Bagayev S.N., Dolbinina V.V., Voloshin E.A., Rhee H., Eichler H.J., Hanuza J. // Laser Phys. Lett. 2009. V. 6. № 7. P. 544.
  15. Benedict J.B., Wallace P.M., Reid P.J., Jang S.-H., Kahr B. // Adv. Mater. 2003. V. 15. № 13. P. 1068.
  16. Enculescu M., Neumann R. // J. Nanosci. Nanotechnol. — 2011. V. 11. № 5. P. 3943.
  17. Khan M.D.S., Narasimhamurty T.S. // J. Mater. Sci. Lett. 1982. V. 1. № 6. P. 268.
  18. Sinko A., Solyankin P., Kargovsky A., Manomenova V., Rudneva E., Kozlova N., Sorokina N., Minakov F., Kuznetsov S., Nikolaev N., Nikolay Surovtsev, Ilya Ozheredov, Alexey Voloshin & Alexander Shkurinov // Sci. Rep. 2021. V. 11. № 1. P. 23433.
  19. Sinko A.S., Surovtsev N.V., Kargovsky A.V., Nikolaev N.A., Manomenova V.L., Kozlova N.N., Rudneva E.B., Voloshin A.E., Shkurinov A.P. // IEEE Trans. Terahertz Sci. Technol. 2023. V. 13. № 5. P. 526.
  20. Jin Y., Reno J. L., Kumar S. // Optica. 2020. V. 7. № 6. P. 708.
  21. Khalatpour A., Paulsen A.K., Deimert C., Wasilewski Z.R., Hu Q. // Nat. Photon. 2021. V. 15. № 1. P. 16.
  22. Yadav S., Kumari M., Nayak D., Moona G., Sharma R., Vijayan N., Jewariya M. // J. Nonlinear Opt. Phys. Mater. 2022. V. 31. № 02. P. 2230001.
  23. Kroumova E., Aroyo M.I., Perez-Mato J.M., Kirov A., Capillas C., Ivantchev S., Wondratschek H. // Ph. Transit. 2003. V. 76. № 1–2. P. 155.
  24. Колесов Б.А. Прикладная КР-спектроскопия. /Отв. ред. Н.В. Суровцев, СО РАН, Новосибирск: Ин-т неорганической химии, 2018. 397 c.
  25. Lu M., Li W., Brown E. R. // Opt. Lett. 2011. V. 36. № 7. P. 1071.
  26. Paul O., Beigang R., Rahm M. // Opt. Express. 2009. V. 17. № 21. P. 18590.
  27. Li D., Huang H., Xia H., Zeng J., Li H., Xie D. // Results Phys. 2018. V. 11. P. 659.
  28. Sreekanth K. V., Han S., Singh R. // Adv. Mater. — 2018. V. 30. № 21. P. 1706696.
  29. Wu Y., Chen S., Zhou S., Liao S. // Proc. IEEE IWS. — IEEE, 2019. P. 1.
  30. Chen Z., Ma X., Zhang B., Zhang Y., Niu Z., Kuang N., Chen W., Li L., Li S. // China Commun. 2019. V. 16. № 2. P. 1.
  31. Wang L., Zhang Y., Guo X., Chen T., Liang H., Hao X., Hou X., Kou W., Zhao Y., Zhou T., Liang S., Yang Z. /Nanomater. 2019. V. 9. № 7. P. 965.
  32. Koch M., Mittleman D.M., Ornik J., Castro-Camus E. // Nat. Rev. Methods Primers. 2023. V. 3. № 1. P. 48.
  33. Smith R. A. // Acta Crystallogr. B. 1975. V. 31. № 9. P. 2347.
  34. Furmanova N.G., Okhrimenko T.M., Eremina T.A., Kuznetsova V.A., Malakhova L.F. // J. Struct. Chem. 1994. V. 35. № 5. P. 697.
  35. Srinivasan B.R., Dhuri S.N., Narvekar K.U. // Indian J. Chem. A (IJCA). 2020. V. 59. № 12. P. 1785.
  36. Okaya Y. // Acta Crystallogr. 1965. V. 19. № 6. P. 879.
  37. Novikova N.E., Lisovenko D.S., Sizova N.L. // Crystallogr. Rep. 2018. V. 63. P. 438.
  38. Регель В.Р., Сизова Н.Л. // Актуальные вопросы физики микровдавливания. АН МССР, Штиинца, Кишинев: Ин-т прикл. Физики. 1989. 194 с.
  39. Регель В.Р., Сизова Н.Л., Беликова Г.С., Турская Т.Н. // Физика твердого тела. 1999. Т. 41. № 2. С. 265.
  40. Novikova N.E., Kulikov A.G., Verin I.A., Smirnova E.S., Pisarevskii Y.V. Anisotropy of lattice deformation of rubidium acid phthalate single crystals under the influence of electric field and temperature. [Submitted to J. Alloys Compd.]
  41. Fano U. // Phys. Rev. 1961. V. 124. № 6. P. 1866.
  42. Tung L.-C., Yu W., Cadden-Zimansky P., Miotkowski I., Chen Y., Smirnov D., Jiang Z. // Phys. Rev. B. 2016. V. 93. № 8. P. 085140.
  43. Rury A. S., Sorenson S. A., Dawlaty J. M. // J. Phys. Chem. C. 2016. V. 120. № 38. P. 21740.
  44. Xu S.J., Xiong S.J., Shi S.L. // J. Chem. Phys. 2005. V. 123. № 22. P. 221105.
  45. Filipič C., Levstik I., Levstik A., Hadži D. // Jpn. J. Appl. Phys. 2016. V. 55. № 8. P. 081203.
  46. Chang B.K., Zhou J.-J., Lee N.-E., Bernardi M. // Npj Comput. Mater. 2022. V. 8. № 1. P. 63.
  47. McCall R.P., Roe M.G., Ginder J.M., Kusumoto T., Epstein A.J., Asturias G.E., Scherr E.M., // Synth. Met. 1989. V. 29. № 1. P. 433.
  48. Petrenko A., Novikova N., Blagov A., Kulikov A., Pisarevskii Y., Verin I., Kovalchuk M. // J. Appl. Crystallogr. 2021. V. 54. № 5. P. 1317.
  49. Pendry J.B., Holden A.J., Robbins D.J., Stewart W.J. Magnetism from conductors and enhanced nonlinear phenomena // IEEE Trans. Microw. Theory Techn. 1999. V. 47. № 11. P. 2075.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. RbAP crystal habit and the XYZ crystallophysical coordinate system corresponding to the crystallographic abc (a). The independent region of the RbAP unit cell and the four nearest oxygen atoms from the environment of the Rb atom (b).

下载 (18KB)
3. Fig. 2. The lattice of rubidium atoms projected onto the ac plane at (a) 295 and (b) 85 K [40].

下载 (13KB)
4. Fig. 3. Transmittance T of the RbAP crystal in the UV, visible and NIR wavelength ranges in unpolarized light (the sample thickness was 826 μm) (the inset shows the transmission spectrum in the wavelength range from 297.5 to 315 nm) and the refractive indices nx, ny, nz for three selected directions [9].

下载 (23KB)
5. Fig. 4. Field absorption coefficient RbAP for the Z-axis measured (a) on a 625 μm thick sample at temperatures from 293 to 7.2 K, (b) on a 625 μm thick sample (red line) and a set of samples in the thickness range of 30–65 μm (black line with standard deviation) at room temperature. Colored curves represent the approximation of the resonance peaks by the Lorentzian and BWF functions (c). Approximate region of the peaks at frequencies of ∼1.5–1.6 THz for the field absorption coefficient along the Z-axis. Three experimental point data sets at low temperatures show splitting of the peak at a frequency of ∼1.5–1.6 THz. Lines represent the approximation of the peaks by the Lorentzian and BWF functions (d). Refractive index of RbAP measured on a 625 µm thick sample at temperatures from 293 to 7.2 K. (d, e) Field absorption coefficient of the RbAP crystal for the X axis. The experimental data and the corresponding approximation are similar to the data for the Z axis from (a, b).

下载 (72KB)
6. Fig. 5. Spectra of generated terahertz radiation in the RbAP crystal at temperatures of 7.2 and 293 K for two polarization configurations: the detecting polarizer along the Z axis, and the polarization of the pump laser along (a) the Z axis or (b) the X axis. For the ZZ and XZ configurations, the spectra at all temperatures were normalized to the data for 7.2 K. Dependence of the energy of the generated terahertz radiation on (c) the pulse energy of the exciting laser (d) the azimuthal angle of polarization of the laser radiation relative to the Z axis. The dotted lines indicate the energy values ​​at the maxima, provided that the pump energy was 310 μJ.

下载 (86KB)
7. Fig. 6. Schematic diagram of a single cell of the SRR-type THz metastructure (a). Model spectra of the transmission amplitude for two polarizations of the incident THz radiation: TE (red) and TM (blue) (b). Distribution of the electric field on the surface of the unit cell of the metastructure at resonance frequencies of 1.52 THz (TE) (c) and 1.87 THz (d).

下载 (58KB)
8. Fig. 7. Spectrochronography of the reference signal in the ZZ configuration at a crystal temperature of 7.2 K and the filtered signal for two orthogonal orientations of the SRR3 metastructure in accordance with the polarization of the terahertz pulse (a). Spectra of the reference and filtered terahertz radiation of the RbAP crystal in the ZZ configuration and absorption coefficients for the SRR3 metastructure (b).

下载 (47KB)

版权所有 © Russian Academy of Sciences, 2024