Research Progress on hCNT3 Structure/Function and Nucleoside Anticancer Drugs
- Authors: Yue X.1, Zhang X.2, Zhang D.3, Zhang Z.2, Tang L.4, Ou Z.4, Cao Y.1, Li J.2, Li Y.5, Liang L.4, Liu W.2, Hu J.2
-
Affiliations:
- Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy,, Chengdu University
- Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy, Chengdu University,
- School of Marxism,, Chengdu Vocational & Technical College of Industry,
- Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy,, Chengdu University,
- Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy, Chengdu University
- Issue: Vol 25, No 2 (2024)
- Pages: 120-136
- Section: Life Sciences
- URL: https://edgccjournal.org/1389-2037/article/view/645522
- DOI: https://doi.org/10.2174/1389203724666230905110952
- ID: 645522
Cite item
Full Text
Abstract
Membrane protein human concentrative nucleoside transporter 3 (hCNT3) can not only transport extracellular nucleosides into the cell but also transport various nucleoside-derived anticancer drugs to the focus of infection for therapeutic effects. Typical nucleoside anticancer drugs, including fludarabine, cladabine, decitabine, and clofarabine, are recognized by hCNT3 and then delivered to the lesion site for their therapeutic effects. hCNT3 is highly conserved during the evolution from lower to higher vertebrates, which contains scaffold and transport domains in structure and delivers substrates by coupling with Na+ and H+ ions in function. In the process of substrate delivery, the transport domain rises from the lower side of transmembrane 9 (TM9) in the inward conformation to the upper side of the outward conformation, accompanied by the collaborative motion of TM7b/ TM4b and hairpin 1b (HP1b)/ HP2b. With the report of a series of three-dimensional structures of homologous CNTs, the structural characteristics and biological functions of hCNT3 have attracted increasing attention from pharmacists and biologists. Our research group has also recently designed an anticancer lead compound with high hCNT3 transport potential based on the structure of 5-fluorouracil. In this work, the sequence evolution, conservation, molecular structure, cationic chelation, substrate recognition, elevator motion pattern and nucleoside derivative drugs of hCNT3 were reviewed, and the differences in hCNT3 transport mode and nucleoside anticancer drug modification were summarized, aiming to provide theoretical guidance for the subsequent molecular design of novel anticancer drugs targeting hCNT3.
Keywords
About the authors
Xinru Yue
Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy,, Chengdu University
Email: info@benthamscience.net
Xun Zhang
Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy, Chengdu University,
Email: info@benthamscience.net
Derong Zhang
School of Marxism,, Chengdu Vocational & Technical College of Industry,
Email: info@benthamscience.net
Zhigang Zhang
Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy, Chengdu University,
Email: info@benthamscience.net
Lingkai Tang
Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy,, Chengdu University,
Email: info@benthamscience.net
Zuoxin Ou
Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy,, Chengdu University,
Email: info@benthamscience.net
Yujie Cao
Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy,, Chengdu University
Email: info@benthamscience.net
Jing Li
Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy, Chengdu University,
Email: info@benthamscience.net
Ying Li
Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy, Chengdu University
Email: info@benthamscience.net
Li Liang
Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy,, Chengdu University,
Email: info@benthamscience.net
Wei Liu
Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy, Chengdu University,
Email: info@benthamscience.net
Jianping Hu
Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy, Chengdu University,
Author for correspondence.
Email: info@benthamscience.net
References
- Jordheim, L.P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov., 2013, 12(6), 447-464. doi: 10.1038/nrd4010 PMID: 23722347
- Parkinson, F.E.; Damaraju, V.L.; Graham, K.; Yao, S.Y.M.; Baldwin, S.A.; Cass, C.E.; Young, J.D. Molecular biology of nucleoside transporters and their distributions and functions in the brain. Curr. Top. Med. Chem., 2011, 11(8), 948-972. doi: 10.2174/156802611795347582 PMID: 21401500
- Young, J.D.; Yao, S.Y.M.; Baldwin, J.M.; Cass, C.E.; Baldwin, S.A. The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol. Aspects Med., 2013, 34(2-3), 529-547. doi: 10.1016/j.mam.2012.05.007 PMID: 23506887
- Wright, N.J.; Lee, S.Y. Toward a molecular basis of cellular nucleoside transport in humans. Chem. Rev., 2021, 121(9), 5336-5358. doi: 10.1021/acs.chemrev.0c00644 PMID: 33232132
- Molina-Arcas, M.; Casado, F.; Pastor-Anglada, M. Nucleoside transporter proteins. Curr. Vasc. Pharmacol., 2009, 7(4), 426-434. doi: 10.2174/157016109789043892 PMID: 19485885
- Latek, D. Rosetta Broker for membrane protein structure prediction: concentrative nucleoside transporter 3 and corticotropin-releasing factor receptor 1 test cases. BMC Struct. Biol., 2017, 17(1), 8. doi: 10.1186/s12900-017-0078-8 PMID: 28774292
- Johnson, Z.L.; Lee, J.H.; Lee, K.; Lee, M.; Kwon, D.Y.; Hong, J.; Lee, S.Y. Structural basis of nucleoside and nucleoside drug selectivity by concentrative nucleoside transporters. eLife, 2014, 3, e03604. doi: 10.7554/eLife.03604 PMID: 25082345
- Rahman, M.F.; Askwith, C.; Govindarajan, R. Molecular determinants of acidic pH-dependent transport of human equilibrative nucleoside transporter 3. J. Biol. Chem., 2017, 292(36), 14775-14785. doi: 10.1074/jbc.M117.787952 PMID: 28729424
- Pastor-Anglada, M.; Urtasun, N.; Pérez-Torras, S. Intestinal nucleoside transporters: function, expression, and regulation. Compr. Physiol., 2018, 8(3), 1003-1017. doi: 10.1002/cphy.c170039 PMID: 29978890
- Smith, K.M.; Slugoski, M.D.; Cass, C.E.; Baldwin, S.A.; Karpinski, E.; Young, J.D. Cation coupling properties of human concentrative nucleoside transporters hCNT1, hCNT2 and hCNT3. Mol. Membr. Biol., 2007, 24(1), 53-64. doi: 10.1080/09687860600942534 PMID: 17453413
- Errasti-Murugarren, E.; Cano-Soldado, P.; Pastor-Anglada, M.; Casado, F.J. Functional characterization of a nucleoside-derived drug transporter variant (hCNT3C602R) showing altered sodium-binding capacity. Mol. Pharmacol., 2008, 73(2), 379-386. doi: 10.1124/mol.107.041848 PMID: 17993510
- Yao, S.Y.M.; Young, J.D. Inward- and outward-facing homology modeling of human concentrative nucleoside transporter 3 (hCNT3) predicts an elevator-type transport mechanism. Channels (Austin), 2018, 12(1), 291-298. doi: 10.1080/19336950.2018.1506665 PMID: 30096006
- Pastor-Anglada, M.; Pérez-Torras, S. Nucleoside transporter proteins as biomarkers of drug responsiveness and drug targets. Front. Pharmacol., 2015, 6, 13. doi: 10.3389/fphar.2015.00013 PMID: 25713533
- Mizel, S.B.; Wilson, L. Nucleoside transport in mammalian cells. Inhibition by colchicine. Biochemistry, 1972, 11(14), 2573-2578. doi: 10.1021/bi00764a003 PMID: 5065219
- Toan, S.V.; To, K.K.W.; Leung, G.P.H.; de Souza, M.O.; Ward, J.L.; Tse, C.M. Genomic organization and functional characterization of the human concentrative nucleoside transporter-3 isoform (hCNT3) expressed in mammalian cells. Pflugers Arch., 2003, 447(2), 195-204. doi: 10.1007/s00424-003-1166-0 PMID: 14504928
- Smith, K.M.; Slugoski, M.D.; Loewen, S.K.; Ng, A.M.L.; Yao, S.Y.M.; Chen, X.Z.; Karpinski, E.; Cass, C.E.; Baldwin, S.A.; Young, J.D. The broadly selective human Na+/nucleoside cotransporter (hCNT3) exhibits novel cation-coupled nucleoside transport characteristics. J. Biol. Chem., 2005, 280(27), 25436-25449. doi: 10.1074/jbc.M409454200 PMID: 15870078
- Hirschi, M.; Johnson, Z.L.; Lee, S.Y. Visualizing multistep elevator-like transitions of a nucleoside transporter. Nature, 2017, 545(7652), 66-70. doi: 10.1038/nature22057 PMID: 28424521
- Zhou, Y.; Liao, L.; Wang, C.; Li, J.; Chi, P.; Xiao, Q.; Liu, Q.; Guo, L.; Sun, L.; Deng, D. Cryo-EM structure of the human concentrative nucleoside transporter CNT3. PLoS Biol., 2020, 18(8), e3000790. doi: 10.1371/journal.pbio.3000790 PMID: 32776918
- Deo, S.V.S.; Sharma, J.; Kumar, S. GLOBOCAN 2020 report on global cancer burden: challenges and opportunities for surgical oncologists. Ann. Surg. Oncol., 2022, 29(11), 6497-6500. doi: 10.1245/s10434-022-12151-6 PMID: 35838905
- Seley-Radtke, K.L.; Yates, M.K. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antiviral Res., 2018, 154, 66-86. doi: 10.1016/j.antiviral.2018.04.004 PMID: 29649496
- Yates, M.K.; Seley-Radtke, K.L. The evolution of antiviral nucleoside analogues: A review for chemists and non-chemists. Part II: Complex modifications to the nucleoside scaffold. Antiviral Res., 2019, 162, 5-21. doi: 10.1016/j.antiviral.2018.11.016 PMID: 30529089
- Wang, W.B.; Yang, Y.; Zhao, Y.P.; Zhang, T.P.; Liao, Q.; Shu, H. Recent studies of 5-fluorouracil resistance in pancreatic cancer. World J. Gastroenterol., 2014, 20(42), 15682-15690. doi: 10.3748/wjg.v20.i42.15682 PMID: 25400452
- Bang, Y.J. Capecitabine in gastric cancer. Expert Rev. Anticancer Ther., 2011, 11(12), 1791-1806. doi: 10.1586/era.11.172 PMID: 22117147
- Symonds, R.P.; Davidson, S.E.; Chan, S.; Reed, N.S.; McMahon, T.; Rai, D.; Harden, S.; Paul, J. SCOTCERV: A phase II trial of docetaxel and gemcitabine as second line chemotherapy in cervical cancer. Gynecol. Oncol., 2011, 123(1), 105-109. doi: 10.1016/j.ygyno.2011.06.001 PMID: 21723596
- Parker, W.B.; Shaddix, S.C.; Gilbert, K.S.; Shepherd, R.V.; Waud, W.R. Enhancement of the in vivo antitumor activity of clofarabine by 1-β-d-4-thio-arabinofuranosyl-cytosine. Cancer Chemother. Pharmacol., 2009, 64(2), 253-261. doi: 10.1007/s00280-008-0862-z PMID: 19002461
- Robak, T.; Lech-Maranda, E.; Korycka, A.; Robak, E. Purine nucleoside analogs as immunosuppressive and antineoplastic agents: Mechanism of action and clinical activity. Curr. Med. Chem., 2006, 13(26), 3165-3189. doi: 10.2174/092986706778742918 PMID: 17168705
- Ritzel, M.W.L.; Ng, A.M.L.; Yao, S.Y.M.; Graham, K.; Loewen, S.K.; Smith, K.M.; Hyde, R.J.; Karpinski, E.; Cass, C.E.; Baldwin, S.A.; Young, J.D. Recent molecular advances in studies of the concentrative Na+-dependent nucleoside transporter (CNT) family: Identification and characterization of novel human and mouse proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib). Mol. Membr. Biol., 2001, 18(1), 65-72. doi: 10.1080/09687680010026313 PMID: 11396613
- Yao, S.Y.; Ng, A.M.; Loewen, S.K.; Cass, C.E.; Baldwin, S.A.; Young, J.D. An ancient prevertebrate Na+ -nucleoside cotransporter (hfCNT) from the Pacific hagfish ( Eptatretus stouti ). Am. J. Physiol. Cell Physiol., 2002, 283(1), C155-C168. doi: 10.1152/ajpcell.00587.2001 PMID: 12055084
- Errasti-Murugarren, E.; Molina-Arcas, M.; Casado, F.J.; Pastor-Anglada, M. A splice variant of the SLC28A3 gene encodes a novel human concentrative nucleoside transporter-3 (hCNT3) protein localized in the endoplasmic reticulum. FASEB J., 2009, 23(1), 172-182. doi: 10.1096/fj.08-113902 PMID: 18827020
- Slugoski, M.D.; Smith, K.M.; Mulinta, R.; Ng, A.M.L.; Yao, S.Y.M.; Morrison, E.L.; Lee, Q.O.T.; Zhang, J.; Karpinski, E.; Cass, C.E.; Baldwin, S.A.; Young, J.D. A conformationally mobile cysteine residue (Cys-561) modulates Na+ and H+ activation of human CNT3. J. Biol. Chem., 2008, 283(36), 24922-24934. doi: 10.1074/jbc.M801793200 PMID: 18621735
- Arimany-Nardi, C.; Claudio-Montero, A.; Viel-Oliva, A.; Schmidtke, P.; Estarellas, C.; Barril, X.; Bidon-Chanal, A.; Pastor-Anglada, M. Identification and characterization of a secondary sodium-binding site and the main selectivity determinants in the human concentrative nucleoside transporter 3. Mol. Pharm., 2017, 14(6), 1980-1987. doi: 10.1021/acs.molpharmaceut.7b00085 PMID: 28441873
- Stecula, A.; Schlessinger, A.; Giacomini, K.M.; Sali, A. Human concentrative nucleoside transporter 3 (hCNT3, SLC28A3) forms a cyclic homotrimer. Biochemistry, 2017, 56(27), 3475-3483. doi: 10.1021/acs.biochem.7b00339 PMID: 28661652
- Drew, D.; Boudker, O. Shared molecular mechanisms of membrane transporters. Annu. Rev. Biochem., 2016, 85(1), 543-572. doi: 10.1146/annurev-biochem-060815-014520 PMID: 27023848
- Errasti-Murugarren, E.; Casado, F.J.; Pastor-Anglada, M. Different N-terminal motifs determine plasma membrane targeting of the human concentrative nucleoside transporter 3 in polarized and nonpolarized cells. Mol. Pharmacol., 2010, 78(5), 795-803. doi: 10.1124/mol.110.065920 PMID: 20643903
- Pastor-Anglada, M.; Cano-soldado, P.; Errasti-murugarren, E.; Casado, F.J. SLC28 genes and concentrative nucleoside transporter (CNT) proteins. Xenobiotica, 2008, 38(7-8), 972-994. doi: 10.1080/00498250802069096 PMID: 18668436
- Loewen, S.K.; Ng, A.M.L.; Yao, S.Y.M.; Cass, C.E.; Baldwin, S.A.; Young, J.D. Identification of amino acid residues responsible for the pyrimidine and purine nucleoside specificities of human concentrative Na+ nucleoside cotransporters hCNT1 and hCNT2. J. Biol. Chem., 1999, 274(35), 24475-24484. doi: 10.1074/jbc.274.35.24475 PMID: 10455109
- Slugoski, M.D.; Smith, K.M.; Ng, A.M.L.; Yao, S.Y.M.; Karpinski, E.; Cass, C.E.; Baldwin, S.A.; Young, J.D. Conserved glutamate residues Glu-343 and Glu-519 provide mechanistic insights into cation/nucleoside cotransport by human concentrative nucleoside transporter hCNT3. J. Biol. Chem., 2009, 284(25), 17266-17280. doi: 10.1074/jbc.M109.009613 PMID: 19380587
- Reyes, N.; Ginter, C.; Boudker, O. Transport mechanism of a bacterial homologue of glutamate transporters. Nature, 2009, 462(7275), 880-885. doi: 10.1038/nature08616 PMID: 19924125
- Lee, C.; Kang, H.J.; von Ballmoos, C.; Newstead, S.; Uzdavinys, P.; Dotson, D.L.; Iwata, S.; Beckstein, O.; Cameron, A.D.; Drew, D. A two-domain elevator mechanism for sodium/proton antiport. Nature, 2013, 501(7468), 573-577. doi: 10.1038/nature12484 PMID: 23995679
- Garaeva, A.A.; Slotboom, D.J. Elevator-type mechanisms of membrane transport. Biochem. Soc. Trans., 2020, 48(3), 1227-1241. doi: 10.1042/BST20200290 PMID: 32369548
- Duan, H.; Zhou, Y.; Shi, X.; Luo, Q.; Gao, J.; Liang, L.; Liu, W.; Peng, L.; Deng, D.; Hu, J. Allosteric and transport modulation of human concentrative nucleoside transporter 3 at the atomic scale. Phys. Chem. Chem. Phys., 2021, 23(44), 25401-25413. doi: 10.1039/D1CP03756K PMID: 34751688
- Gorraitz, E.; Pastor-Anglada, M.; Lostao, M.P. Effects of Na+ and H+ on steady-state and presteady-state currents of the human concentrative nucleoside transporter 3 (hCNT3). Pflugers Arch., 2010, 460(3), 617-632. doi: 10.1007/s00424-010-0846-9 PMID: 20495821
- Young, J.D. The SLC28 (CNT) and SLC29 (ENT) nucleoside transporter families: A 30-year collaborative odyssey. Biochem. Soc. Trans., 2016, 44(3), 869-876. doi: 10.1042/BST20160038 PMID: 27284054
- Elion, G.B. Acyclovir: Discovery, mechanism of action, and selectivity. J. Med. Virol., 1993, 41(S1)(Suppl. 1), 2-6. doi: 10.1002/jmv.1890410503 PMID: 8245887
- Ross, S.R.; McTavish, D.; Faulds, D. Fludarabine. Drugs, 1993, 45(5), 737-759. doi: 10.2165/00003495-199345050-00009 PMID: 7686467
- Gandhi, V.; Plunkett, W. Cellular and clinical pharmacology of fludarabine. Clin. Pharmacokinet., 2002, 41(2), 93-103. doi: 10.2165/00003088-200241020-00002 PMID: 11888330
- Catovsky, D.; Richards, S.; Matutes, E.; Oscier, D.; Dyer, M.J.S.; Bezares, R.F.; Pettitt, A.R.; Hamblin, T.; Milligan, D.W.; Child, J.A.; Hamilton, M.S.; Dearden, C.E.; Smith, A.G.; Bosanquet, A.G.; Davis, Z.; Brito-Babapulle, V.; Else, M.; Wade, R.; Hillmen, P. Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): A randomised controlled trial. Lancet, 2007, 370(9583), 230-239. doi: 10.1016/S0140-6736(07)61125-8 PMID: 17658394
- Christensen, L.F.; Broom, A.D.; Robins, M.J.; Bloch, A. Synthesis and biological activity of selected 2,6-disubstituted(2-deoxy-.alpha.- and -.beta.-D-erythro-pentofuranosyl)purines. J. Med. Chem., 1972, 15(7), 735-739. doi: 10.1021/jm00277a010 PMID: 4625489
- Liliemark, J. The clinical pharmacokinetics of cladribine. Clin. Pharmacokinet., 1997, 32(2), 120-131. doi: 10.2165/00003088-199732020-00003 PMID: 9068927
- Bryson, H.M.; Sorkin, E.M. Cladribine. Drugs, 1993, 46(5), 872-894. doi: 10.2165/00003495-199346050-00007 PMID: 7507037
- Bonate, P.L.; Arthaud, L.; Cantrell, W.R., Jr; Stephenson, K.; Secrist, J.A., III; Weitman, S. Discovery and development of clofarabine: A nucleoside analogue for treating cancer. Nat. Rev. Drug Discov., 2006, 5(10), 855-863. doi: 10.1038/nrd2055 PMID: 17016426
- Kantarjian, H.M.; Jeha, S.; Gandhi, V.; Wess, M.; Faderl, S. Clofarabine: Past, present, and future. Leuk. Lymphoma, 2007, 48(10), 1922-1930. doi: 10.1080/10428190701545644 PMID: 17852710
- King, K.M.; Damaraju, V.L.; Vickers, M.F.; Yao, S.Y.; Lang, T.; Tackaberry, T.E.; Mowles, D.A.; Ng, A.M.L.; Young, J.D.; Cass, C.E. A comparison of the transportability, and its role in cytotoxicity, of clofarabine, cladribine, and fludarabine by recombinant human nucleoside transporters produced in three model expression systems. Mol. Pharmacol., 2006, 69(1), 346-353. doi: 10.1124/mol.105.015768 PMID: 16234483
- Zhang, J.; Visser, F.; Vickers, M.F.; Lang, T.; Robins, M.J.; Nielsen, L.P.C.; Nowak, I.; Baldwin, S.A.; Young, J.D.; Cass, C.E. Uridine binding motifs of human concentrative nucleoside transporters 1 and 3 produced in Saccharomyces cerevisiae. Mol. Pharmacol., 2003, 64(6), 1512-1520. doi: 10.1124/mol.64.6.1512 PMID: 14645682
- Reist, E.J.; Goodman, L. Synthesis of 9-β-D-Arabinofuranosylguanine *. Biochemistry, 1964, 3(1), 15-18. doi: 10.1021/bi00889a004 PMID: 14114497
- Lambe, C.U.; Averett, D.R.; Paff, M.T.; Reardon, J.E.; Wilson, J.G.; Krenitsky, T.A. 2-Amino-6-methoxypurine arabinoside: An agent for T-cell malignancies. Cancer Res., 1995, 55(15), 3352-3356. PMID: 7614470
- Gandhi, V.; Plunkett, W. Clofarabine and nelarabine: Two new purine nucleoside analogs. Curr. Opin. Oncol., 2006, 18(6), 584-590. doi: 10.1097/01.cco.0000245326.65152.af PMID: 16988579
- Kearney, B.P.; Flaherty, J.F.; Shah, J. Tenofovir disoproxil fumarate: Clinical pharmacology and pharmacokinetics. Clin. Pharmacokinet., 2004, 43(9), 595-612. doi: 10.2165/00003088-200443090-00003 PMID: 15217303
- Jones, S.A.; Murakami, E.; Delaney, W.; Furman, P.; Hu, J. Noncompetitive inhibition of hepatitis B virus reverse transcriptase protein priming and DNA synthesis by the nucleoside analog clevudine. Antimicrob. Agents Chemother., 2013, 57(9), 4181-4189. doi: 10.1128/AAC.00599-13 PMID: 23774432
- Gallant, J.E.; Deresinski, S. Tenofovir disoproxil fumarate. Clin. Infect. Dis., 2003, 37(7), 944-950. doi: 10.1086/378068 PMID: 13130407
- Robinson, D.M.; Scott, L.J.; Plosker, G.L. Entecavir. Drugs, 2006, 66(12), 1605-1622. doi: 10.2165/00003495-200666120-00009 PMID: 16956310
- Keating, G.M. Entecavir. Drugs, 2011, 71(18), 2511-2529. doi: 10.2165/11208510-000000000-00000 PMID: 22141390
- Chang, T.T.; Gish, R.G.; de Man, R.; Gadano, A.; Sollano, J.; Chao, Y.C.; Lok, A.S.; Han, K.H.; Goodman, Z.; Zhu, J.; Cross, A.; DeHertogh, D.; Wilber, R.; Colonno, R.; Apelian, D. A comparison of entecavir and lamivudine for HBeAg-positive chronic hepatitis B. N. Engl. J. Med., 2006, 354(10), 1001-1010. doi: 10.1056/NEJMoa051285 PMID: 16525137
- Scott, L.J.; Keating, G.M. Entecavir. Drugs, 2009, 69(8), 1003-1033. doi: 10.2165/00003495-200969080-00005 PMID: 19496629
- Pískala, A.; orm, F. Nucleic acids components and their analogues. LI. Synthesis of 1-glycosyl derivatives of 5-azauracil and 5-azacytosine. Collect. Czech. Chem. Commun., 1964, 29(9), 2060-2076. doi: 10.1135/cccc19642060
- Füller, M.; Klein, M.; Schmidt, E.; Rohde, C.; Göllner, S.; Schulze, I.; Qianli, J.; Berdel, W.; Edemir, B.; Müller-Tidow, C.; Tschanter, P. 5-Azacytidine enhances efficacy of multiple chemotherapy drugs in AML and lung cancer with modulation of CpG methylation. Int. J. Oncol., 2015, 46(3), 1192-1204. doi: 10.3892/ijo.2014.2792 PMID: 25501798
- Kaminskas, E.; Farrell, A.T.; Wang, Y.C.; Sridhara, R.; Pazdur, R. FDA drug approval summary: Azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist, 2005, 10(3), 176-182. doi: 10.1634/theoncologist.10-3-176 PMID: 15793220
- Müller, A.; Florek, M. 5-azacytidine/ Azacitidine. Recent Results Cancer Res., 2010, 184, 159-170. doi: 10.1007/978-3-642-01222-8_11 PMID: 20072837
- Guo, G.; Li, G.; Liu, D.; Yang, Q.J.; Liu, Y.; Jing, Y.K.; Zhao, L.X. Synthesis and antiproliferative activities of 5-azacytidine analogues in human leukemia cells. Molecules, 2008, 13(7), 1487-1500. doi: 10.3390/molecules13071487 PMID: 18719520
- Daskalakis, M.; Blagitko-Dorfs, N.; Hackanson, B. Decitabine. Recent Results Cancer Res., 2010, 184, 131-157. doi: 10.1007/978-3-642-01222-8_10 PMID: 20072836
- Jabbour, E.; Issa, J.P.; Garcia-Manero, G.; Kantarjian, H. Evolution of decitabine development. Cancer, 2008, 112(11), 2341-2351. doi: 10.1002/cncr.23463 PMID: 18398832
- Stresemann, C.; Lyko, F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int. J. Cancer, 2008, 123(1), 8-13. doi: 10.1002/ijc.23607 PMID: 18425818
- Duschinsky, R.; Pleven, E.; Heidelberger, C. The synthesis of 5-fluoropyrimidines. J. Am. Chem. Soc., 1957, 79(16), 4559-4560. doi: 10.1021/ja01573a087
- Parker, W.B.; Cheng, Y.C. Metabolism and mechanism of action of 5-fluorouracil. Pharmacol. Ther., 1990, 48(3), 381-395. doi: 10.1016/0163-7258(90)90056-8 PMID: 1707544
- Diasio, R.B.; Harris, B.E. Clinical pharmacology of 5-fluorouracil. Clin. Pharmacokinet., 1989, 16(4), 215-237. doi: 10.2165/00003088-198916040-00002 PMID: 2656050
- Heggie, G.D.; Sommadossi, J.P.; Cross, D.S.; Huster, W.J.; Diasio, R.B. Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res., 1987, 47(8), 2203-2206. PMID: 3829006
- Sommer, H.; Santi, D.V. Purification and amino acid analysis of an active site peptide from thymidylate synthetase containing covalently bound 5-fluoro-2′-deoxyuridylate and methylenetetrahydrofolate. Biochem. Biophys. Res. Commun., 1974, 57(3), 689-695. doi: 10.1016/0006-291X(74)90601-9 PMID: 4275130
- Walwick, E.R.; Roberts, W.K.; Dekker, C.A. Cyclisation during the phosphorylation of uridine and cytidine by polyphosphoric acid-A new route to the O-2, 2′-cyclonucleosides. Proc. Chem. Soc. London, 1959, (3), 84-84.
- El-Subbagh, H.I.; Al-Badr, A.A. Cytarabine. Profiles Drug Subst. Excip. Relat. Methodol., 2009, 34, 37-113. doi: 10.1016/S1871-5125(09)34002-9 PMID: 22469172
- Baker, W.J.; Royer, G.L., Jr; Weiss, R.B. Cytarabine and neurologic toxicity. J. Clin. Oncol., 1991, 9(4), 679-693. doi: 10.1200/JCO.1991.9.4.679 PMID: 1648599
- Hamada, A.; Kawaguchi, T.; Nakano, M. Clinical pharmacokinetics of cytarabine formulations. Clin. Pharmacokinet., 2002, 41(10), 705-718. doi: 10.2165/00003088-200241100-00002 PMID: 12162758
- Mini, E.; Nobili, S.; Caciagli, B.; Landini, I.; Mazzei, T. Cellular pharmacology of gemcitabine. Ann. Oncol., 2006, 17(Suppl. 5), v7-v12. doi: 10.1093/annonc/mdj941 PMID: 16807468
- Toschi, L.; Finocchiaro, G.; Bartolini, S.; Gioia, V.; Cappuzzo, F. Role of gemcitabine in cancer therapy. Future Oncol., 2005, 1(1), 7-17. doi: 10.1517/14796694.1.1.7 PMID: 16555971
- McLeod, G.X.; Hammer, S.M. Zidovudine: Five years later. Ann. Intern. Med., 1992, 117(6), 487-501. doi: 10.7326/0003-4819-117-6-487 PMID: 1503352
- Blum, M.R.; Liao, S.H.; Good, S.S.; de Miranda, P. Pharmacokinetics and bioavailability of zidovudine in humans. Am. J. Med., 1988, 85(2A), 189-194. PMID: 3165603
- Child, S.; Montaner, J.; Tsoukas, C.; Fanning, M.; Le, T.; Wall, R.A.; Ruedy, J. Canadian multicenter azidothymidine trial: AZT pharmacokinetics. J. Acquir. Immune Defic. Syndr., 1991, 4(9), 865-870. PMID: 1895207
- Veal, G.J.; Back, D.J. Metabolism of zidovudine. Gen. Pharmacol., 1995, 26(7), 1469-1475. doi: 10.1016/0306-3623(95)00047-X PMID: 8690233
- Langtry, H.D.; Campoli-Richards, D.M. Zidovudine. Drugs, 1989, 37(4), 408-450. doi: 10.2165/00003495-198937040-00003 PMID: 2661194
- Tan, C.K.; Rigal, C.; Mian, A.M.; So, A.G.; Downey, K.M. Inhibition of the RNase H activity of HIV reverse transcriptase by azidothymidylate. Biochemistry, 1991, 30(20), 4831-4835. doi: 10.1021/bi00234a001 PMID: 1709809
- Hitchcock, M.J.M.; Jaffe, H.S.; Martin, J.C.; Stagg, R.J. Cidofovir, a new agent with potent anti-herpesvirus activity. Antivir. Chem. Chemother., 1996, 7(3), 115-127. doi: 10.1177/095632029600700301
- Cundy, K.C. Clinical pharmacokinetics of the antiviral nucleotide analogues cidofovir and adefovir. Clin. Pharmacokinet., 1999, 36(2), 127-143. doi: 10.2165/00003088-199936020-00004 PMID: 10092959
- Plosker, G.L.; Noble, S. Cidofovir. Drugs, 1999, 58(2), 325-345. doi: 10.2165/00003495-199958020-00015 PMID: 10473024
- Clarke, M.L.; Damaraju, V.L.; Zhang, J.; Mowles, D.; Tackaberry, T.; Lang, T.; Smith, K.M.; Young, J.D.; Tomkinson, B.; Cass, C.E. The role of human nucleoside transporters in cellular uptake of 4′-thio-β-D-arabinofuranosylcytosine and β-D-arabinosylcytosine. Mol. Pharmacol., 2006, 70(1), 303-310. doi: 10.1124/mol.105.021543 PMID: 16617163
- Reigner, B.; Blesch, K.; Weidekamm, E. Clinical pharmacokinetics of capecitabine. Clin. Pharmacokinet., 2001, 40(2), 85-104. doi: 10.2165/00003088-200140020-00002 PMID: 11286326
- Wagstaff, A.J.; Ibbotson, T.; Goa, K.L. Capecitabine. Drugs, 2003, 63(2), 217-236. doi: 10.2165/00003495-200363020-00009 PMID: 12515569
- Mikhail, S.E.; Sun, J.F.; Marshall, J.L. Safety of capecitabine: A review. Expert Opin. Drug Saf., 2010, 9(5), 831-841. doi: 10.1517/14740338.2010.511610 PMID: 20722491
- Walko, C.M.; Lindley, C. Capecitabine: A review. Clin. Ther., 2005, 27(1), 23-44. doi: 10.1016/j.clinthera.2005.01.005 PMID: 15763604
Supplementary files
