Research Progress on hCNT3 Structure/Function and Nucleoside Anticancer Drugs

  • Authors: Yue X.1, Zhang X.2, Zhang D.3, Zhang Z.2, Tang L.4, Ou Z.4, Cao Y.1, Li J.2, Li Y.5, Liang L.4, Liu W.2, Hu J.2
  • Affiliations:
    1. Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy,, Chengdu University
    2. Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy, Chengdu University,
    3. School of Marxism,, Chengdu Vocational & Technical College of Industry,
    4. Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy,, Chengdu University,
    5. Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy, Chengdu University
  • Issue: Vol 25, No 2 (2024)
  • Pages: 120-136
  • Section: Life Sciences
  • URL: https://edgccjournal.org/1389-2037/article/view/645522
  • DOI: https://doi.org/10.2174/1389203724666230905110952
  • ID: 645522

Cite item

Full Text

Abstract

Membrane protein human concentrative nucleoside transporter 3 (hCNT3) can not only transport extracellular nucleosides into the cell but also transport various nucleoside-derived anticancer drugs to the focus of infection for therapeutic effects. Typical nucleoside anticancer drugs, including fludarabine, cladabine, decitabine, and clofarabine, are recognized by hCNT3 and then delivered to the lesion site for their therapeutic effects. hCNT3 is highly conserved during the evolution from lower to higher vertebrates, which contains scaffold and transport domains in structure and delivers substrates by coupling with Na+ and H+ ions in function. In the process of substrate delivery, the transport domain rises from the lower side of transmembrane 9 (TM9) in the inward conformation to the upper side of the outward conformation, accompanied by the collaborative motion of TM7b/ TM4b and hairpin 1b (HP1b)/ HP2b. With the report of a series of three-dimensional structures of homologous CNTs, the structural characteristics and biological functions of hCNT3 have attracted increasing attention from pharmacists and biologists. Our research group has also recently designed an anticancer lead compound with high hCNT3 transport potential based on the structure of 5-fluorouracil. In this work, the sequence evolution, conservation, molecular structure, cationic chelation, substrate recognition, elevator motion pattern and nucleoside derivative drugs of hCNT3 were reviewed, and the differences in hCNT3 transport mode and nucleoside anticancer drug modification were summarized, aiming to provide theoretical guidance for the subsequent molecular design of novel anticancer drugs targeting hCNT3.

About the authors

Xinru Yue

Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy,, Chengdu University

Email: info@benthamscience.net

Xun Zhang

Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy, Chengdu University,

Email: info@benthamscience.net

Derong Zhang

School of Marxism,, Chengdu Vocational & Technical College of Industry,

Email: info@benthamscience.net

Zhigang Zhang

Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy, Chengdu University,

Email: info@benthamscience.net

Lingkai Tang

Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy,, Chengdu University,

Email: info@benthamscience.net

Zuoxin Ou

Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy,, Chengdu University,

Email: info@benthamscience.net

Yujie Cao

Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy,, Chengdu University

Email: info@benthamscience.net

Jing Li

Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy, Chengdu University,

Email: info@benthamscience.net

Ying Li

Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy, Chengdu University

Email: info@benthamscience.net

Li Liang

Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy,, Chengdu University,

Email: info@benthamscience.net

Wei Liu

Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy, Chengdu University,

Email: info@benthamscience.net

Jianping Hu

Sichuan Provincial Education Department Key Laboratory of Medicinal and Edible Plant Resources Development, College of Pharmacy, Chengdu University,

Author for correspondence.
Email: info@benthamscience.net

References

  1. Jordheim, L.P.; Durantel, D.; Zoulim, F.; Dumontet, C. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat. Rev. Drug Discov., 2013, 12(6), 447-464. doi: 10.1038/nrd4010 PMID: 23722347
  2. Parkinson, F.E.; Damaraju, V.L.; Graham, K.; Yao, S.Y.M.; Baldwin, S.A.; Cass, C.E.; Young, J.D. Molecular biology of nucleoside transporters and their distributions and functions in the brain. Curr. Top. Med. Chem., 2011, 11(8), 948-972. doi: 10.2174/156802611795347582 PMID: 21401500
  3. Young, J.D.; Yao, S.Y.M.; Baldwin, J.M.; Cass, C.E.; Baldwin, S.A. The human concentrative and equilibrative nucleoside transporter families, SLC28 and SLC29. Mol. Aspects Med., 2013, 34(2-3), 529-547. doi: 10.1016/j.mam.2012.05.007 PMID: 23506887
  4. Wright, N.J.; Lee, S.Y. Toward a molecular basis of cellular nucleoside transport in humans. Chem. Rev., 2021, 121(9), 5336-5358. doi: 10.1021/acs.chemrev.0c00644 PMID: 33232132
  5. Molina-Arcas, M.; Casado, F.; Pastor-Anglada, M. Nucleoside transporter proteins. Curr. Vasc. Pharmacol., 2009, 7(4), 426-434. doi: 10.2174/157016109789043892 PMID: 19485885
  6. Latek, D. Rosetta Broker for membrane protein structure prediction: concentrative nucleoside transporter 3 and corticotropin-releasing factor receptor 1 test cases. BMC Struct. Biol., 2017, 17(1), 8. doi: 10.1186/s12900-017-0078-8 PMID: 28774292
  7. Johnson, Z.L.; Lee, J.H.; Lee, K.; Lee, M.; Kwon, D.Y.; Hong, J.; Lee, S.Y. Structural basis of nucleoside and nucleoside drug selectivity by concentrative nucleoside transporters. eLife, 2014, 3, e03604. doi: 10.7554/eLife.03604 PMID: 25082345
  8. Rahman, M.F.; Askwith, C.; Govindarajan, R. Molecular determinants of acidic pH-dependent transport of human equilibrative nucleoside transporter 3. J. Biol. Chem., 2017, 292(36), 14775-14785. doi: 10.1074/jbc.M117.787952 PMID: 28729424
  9. Pastor-Anglada, M.; Urtasun, N.; Pérez-Torras, S. Intestinal nucleoside transporters: function, expression, and regulation. Compr. Physiol., 2018, 8(3), 1003-1017. doi: 10.1002/cphy.c170039 PMID: 29978890
  10. Smith, K.M.; Slugoski, M.D.; Cass, C.E.; Baldwin, S.A.; Karpinski, E.; Young, J.D. Cation coupling properties of human concentrative nucleoside transporters hCNT1, hCNT2 and hCNT3. Mol. Membr. Biol., 2007, 24(1), 53-64. doi: 10.1080/09687860600942534 PMID: 17453413
  11. Errasti-Murugarren, E.; Cano-Soldado, P.; Pastor-Anglada, M.; Casado, F.J. Functional characterization of a nucleoside-derived drug transporter variant (hCNT3C602R) showing altered sodium-binding capacity. Mol. Pharmacol., 2008, 73(2), 379-386. doi: 10.1124/mol.107.041848 PMID: 17993510
  12. Yao, S.Y.M.; Young, J.D. Inward- and outward-facing homology modeling of human concentrative nucleoside transporter 3 (hCNT3) predicts an elevator-type transport mechanism. Channels (Austin), 2018, 12(1), 291-298. doi: 10.1080/19336950.2018.1506665 PMID: 30096006
  13. Pastor-Anglada, M.; Pérez-Torras, S. Nucleoside transporter proteins as biomarkers of drug responsiveness and drug targets. Front. Pharmacol., 2015, 6, 13. doi: 10.3389/fphar.2015.00013 PMID: 25713533
  14. Mizel, S.B.; Wilson, L. Nucleoside transport in mammalian cells. Inhibition by colchicine. Biochemistry, 1972, 11(14), 2573-2578. doi: 10.1021/bi00764a003 PMID: 5065219
  15. Toan, S.V.; To, K.K.W.; Leung, G.P.H.; de Souza, M.O.; Ward, J.L.; Tse, C.M. Genomic organization and functional characterization of the human concentrative nucleoside transporter-3 isoform (hCNT3) expressed in mammalian cells. Pflugers Arch., 2003, 447(2), 195-204. doi: 10.1007/s00424-003-1166-0 PMID: 14504928
  16. Smith, K.M.; Slugoski, M.D.; Loewen, S.K.; Ng, A.M.L.; Yao, S.Y.M.; Chen, X.Z.; Karpinski, E.; Cass, C.E.; Baldwin, S.A.; Young, J.D. The broadly selective human Na+/nucleoside cotransporter (hCNT3) exhibits novel cation-coupled nucleoside transport characteristics. J. Biol. Chem., 2005, 280(27), 25436-25449. doi: 10.1074/jbc.M409454200 PMID: 15870078
  17. Hirschi, M.; Johnson, Z.L.; Lee, S.Y. Visualizing multistep elevator-like transitions of a nucleoside transporter. Nature, 2017, 545(7652), 66-70. doi: 10.1038/nature22057 PMID: 28424521
  18. Zhou, Y.; Liao, L.; Wang, C.; Li, J.; Chi, P.; Xiao, Q.; Liu, Q.; Guo, L.; Sun, L.; Deng, D. Cryo-EM structure of the human concentrative nucleoside transporter CNT3. PLoS Biol., 2020, 18(8), e3000790. doi: 10.1371/journal.pbio.3000790 PMID: 32776918
  19. Deo, S.V.S.; Sharma, J.; Kumar, S. GLOBOCAN 2020 report on global cancer burden: challenges and opportunities for surgical oncologists. Ann. Surg. Oncol., 2022, 29(11), 6497-6500. doi: 10.1245/s10434-022-12151-6 PMID: 35838905
  20. Seley-Radtke, K.L.; Yates, M.K. The evolution of nucleoside analogue antivirals: A review for chemists and non-chemists. Part 1: Early structural modifications to the nucleoside scaffold. Antiviral Res., 2018, 154, 66-86. doi: 10.1016/j.antiviral.2018.04.004 PMID: 29649496
  21. Yates, M.K.; Seley-Radtke, K.L. The evolution of antiviral nucleoside analogues: A review for chemists and non-chemists. Part II: Complex modifications to the nucleoside scaffold. Antiviral Res., 2019, 162, 5-21. doi: 10.1016/j.antiviral.2018.11.016 PMID: 30529089
  22. Wang, W.B.; Yang, Y.; Zhao, Y.P.; Zhang, T.P.; Liao, Q.; Shu, H. Recent studies of 5-fluorouracil resistance in pancreatic cancer. World J. Gastroenterol., 2014, 20(42), 15682-15690. doi: 10.3748/wjg.v20.i42.15682 PMID: 25400452
  23. Bang, Y.J. Capecitabine in gastric cancer. Expert Rev. Anticancer Ther., 2011, 11(12), 1791-1806. doi: 10.1586/era.11.172 PMID: 22117147
  24. Symonds, R.P.; Davidson, S.E.; Chan, S.; Reed, N.S.; McMahon, T.; Rai, D.; Harden, S.; Paul, J. SCOTCERV: A phase II trial of docetaxel and gemcitabine as second line chemotherapy in cervical cancer. Gynecol. Oncol., 2011, 123(1), 105-109. doi: 10.1016/j.ygyno.2011.06.001 PMID: 21723596
  25. Parker, W.B.; Shaddix, S.C.; Gilbert, K.S.; Shepherd, R.V.; Waud, W.R. Enhancement of the in vivo antitumor activity of clofarabine by 1-β-d-4-thio-arabinofuranosyl-cytosine. Cancer Chemother. Pharmacol., 2009, 64(2), 253-261. doi: 10.1007/s00280-008-0862-z PMID: 19002461
  26. Robak, T.; Lech-Maranda, E.; Korycka, A.; Robak, E. Purine nucleoside analogs as immunosuppressive and antineoplastic agents: Mechanism of action and clinical activity. Curr. Med. Chem., 2006, 13(26), 3165-3189. doi: 10.2174/092986706778742918 PMID: 17168705
  27. Ritzel, M.W.L.; Ng, A.M.L.; Yao, S.Y.M.; Graham, K.; Loewen, S.K.; Smith, K.M.; Hyde, R.J.; Karpinski, E.; Cass, C.E.; Baldwin, S.A.; Young, J.D. Recent molecular advances in studies of the concentrative Na+-dependent nucleoside transporter (CNT) family: Identification and characterization of novel human and mouse proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib). Mol. Membr. Biol., 2001, 18(1), 65-72. doi: 10.1080/09687680010026313 PMID: 11396613
  28. Yao, S.Y.; Ng, A.M.; Loewen, S.K.; Cass, C.E.; Baldwin, S.A.; Young, J.D. An ancient prevertebrate Na+ -nucleoside cotransporter (hfCNT) from the Pacific hagfish ( Eptatretus stouti ). Am. J. Physiol. Cell Physiol., 2002, 283(1), C155-C168. doi: 10.1152/ajpcell.00587.2001 PMID: 12055084
  29. Errasti-Murugarren, E.; Molina-Arcas, M.; Casado, F.J.; Pastor-Anglada, M. A splice variant of the SLC28A3 gene encodes a novel human concentrative nucleoside transporter-3 (hCNT3) protein localized in the endoplasmic reticulum. FASEB J., 2009, 23(1), 172-182. doi: 10.1096/fj.08-113902 PMID: 18827020
  30. Slugoski, M.D.; Smith, K.M.; Mulinta, R.; Ng, A.M.L.; Yao, S.Y.M.; Morrison, E.L.; Lee, Q.O.T.; Zhang, J.; Karpinski, E.; Cass, C.E.; Baldwin, S.A.; Young, J.D. A conformationally mobile cysteine residue (Cys-561) modulates Na+ and H+ activation of human CNT3. J. Biol. Chem., 2008, 283(36), 24922-24934. doi: 10.1074/jbc.M801793200 PMID: 18621735
  31. Arimany-Nardi, C.; Claudio-Montero, A.; Viel-Oliva, A.; Schmidtke, P.; Estarellas, C.; Barril, X.; Bidon-Chanal, A.; Pastor-Anglada, M. Identification and characterization of a secondary sodium-binding site and the main selectivity determinants in the human concentrative nucleoside transporter 3. Mol. Pharm., 2017, 14(6), 1980-1987. doi: 10.1021/acs.molpharmaceut.7b00085 PMID: 28441873
  32. Stecula, A.; Schlessinger, A.; Giacomini, K.M.; Sali, A. Human concentrative nucleoside transporter 3 (hCNT3, SLC28A3) forms a cyclic homotrimer. Biochemistry, 2017, 56(27), 3475-3483. doi: 10.1021/acs.biochem.7b00339 PMID: 28661652
  33. Drew, D.; Boudker, O. Shared molecular mechanisms of membrane transporters. Annu. Rev. Biochem., 2016, 85(1), 543-572. doi: 10.1146/annurev-biochem-060815-014520 PMID: 27023848
  34. Errasti-Murugarren, E.; Casado, F.J.; Pastor-Anglada, M. Different N-terminal motifs determine plasma membrane targeting of the human concentrative nucleoside transporter 3 in polarized and nonpolarized cells. Mol. Pharmacol., 2010, 78(5), 795-803. doi: 10.1124/mol.110.065920 PMID: 20643903
  35. Pastor-Anglada, M.; Cano-soldado, P.; Errasti-murugarren, E.; Casado, F.J. SLC28 genes and concentrative nucleoside transporter (CNT) proteins. Xenobiotica, 2008, 38(7-8), 972-994. doi: 10.1080/00498250802069096 PMID: 18668436
  36. Loewen, S.K.; Ng, A.M.L.; Yao, S.Y.M.; Cass, C.E.; Baldwin, S.A.; Young, J.D. Identification of amino acid residues responsible for the pyrimidine and purine nucleoside specificities of human concentrative Na+ nucleoside cotransporters hCNT1 and hCNT2. J. Biol. Chem., 1999, 274(35), 24475-24484. doi: 10.1074/jbc.274.35.24475 PMID: 10455109
  37. Slugoski, M.D.; Smith, K.M.; Ng, A.M.L.; Yao, S.Y.M.; Karpinski, E.; Cass, C.E.; Baldwin, S.A.; Young, J.D. Conserved glutamate residues Glu-343 and Glu-519 provide mechanistic insights into cation/nucleoside cotransport by human concentrative nucleoside transporter hCNT3. J. Biol. Chem., 2009, 284(25), 17266-17280. doi: 10.1074/jbc.M109.009613 PMID: 19380587
  38. Reyes, N.; Ginter, C.; Boudker, O. Transport mechanism of a bacterial homologue of glutamate transporters. Nature, 2009, 462(7275), 880-885. doi: 10.1038/nature08616 PMID: 19924125
  39. Lee, C.; Kang, H.J.; von Ballmoos, C.; Newstead, S.; Uzdavinys, P.; Dotson, D.L.; Iwata, S.; Beckstein, O.; Cameron, A.D.; Drew, D. A two-domain elevator mechanism for sodium/proton antiport. Nature, 2013, 501(7468), 573-577. doi: 10.1038/nature12484 PMID: 23995679
  40. Garaeva, A.A.; Slotboom, D.J. Elevator-type mechanisms of membrane transport. Biochem. Soc. Trans., 2020, 48(3), 1227-1241. doi: 10.1042/BST20200290 PMID: 32369548
  41. Duan, H.; Zhou, Y.; Shi, X.; Luo, Q.; Gao, J.; Liang, L.; Liu, W.; Peng, L.; Deng, D.; Hu, J. Allosteric and transport modulation of human concentrative nucleoside transporter 3 at the atomic scale. Phys. Chem. Chem. Phys., 2021, 23(44), 25401-25413. doi: 10.1039/D1CP03756K PMID: 34751688
  42. Gorraitz, E.; Pastor-Anglada, M.; Lostao, M.P. Effects of Na+ and H+ on steady-state and presteady-state currents of the human concentrative nucleoside transporter 3 (hCNT3). Pflugers Arch., 2010, 460(3), 617-632. doi: 10.1007/s00424-010-0846-9 PMID: 20495821
  43. Young, J.D. The SLC28 (CNT) and SLC29 (ENT) nucleoside transporter families: A 30-year collaborative odyssey. Biochem. Soc. Trans., 2016, 44(3), 869-876. doi: 10.1042/BST20160038 PMID: 27284054
  44. Elion, G.B. Acyclovir: Discovery, mechanism of action, and selectivity. J. Med. Virol., 1993, 41(S1)(Suppl. 1), 2-6. doi: 10.1002/jmv.1890410503 PMID: 8245887
  45. Ross, S.R.; McTavish, D.; Faulds, D. Fludarabine. Drugs, 1993, 45(5), 737-759. doi: 10.2165/00003495-199345050-00009 PMID: 7686467
  46. Gandhi, V.; Plunkett, W. Cellular and clinical pharmacology of fludarabine. Clin. Pharmacokinet., 2002, 41(2), 93-103. doi: 10.2165/00003088-200241020-00002 PMID: 11888330
  47. Catovsky, D.; Richards, S.; Matutes, E.; Oscier, D.; Dyer, M.J.S.; Bezares, R.F.; Pettitt, A.R.; Hamblin, T.; Milligan, D.W.; Child, J.A.; Hamilton, M.S.; Dearden, C.E.; Smith, A.G.; Bosanquet, A.G.; Davis, Z.; Brito-Babapulle, V.; Else, M.; Wade, R.; Hillmen, P. Assessment of fludarabine plus cyclophosphamide for patients with chronic lymphocytic leukaemia (the LRF CLL4 Trial): A randomised controlled trial. Lancet, 2007, 370(9583), 230-239. doi: 10.1016/S0140-6736(07)61125-8 PMID: 17658394
  48. Christensen, L.F.; Broom, A.D.; Robins, M.J.; Bloch, A. Synthesis and biological activity of selected 2,6-disubstituted(2-deoxy-.alpha.- and -.beta.-D-erythro-pentofuranosyl)purines. J. Med. Chem., 1972, 15(7), 735-739. doi: 10.1021/jm00277a010 PMID: 4625489
  49. Liliemark, J. The clinical pharmacokinetics of cladribine. Clin. Pharmacokinet., 1997, 32(2), 120-131. doi: 10.2165/00003088-199732020-00003 PMID: 9068927
  50. Bryson, H.M.; Sorkin, E.M. Cladribine. Drugs, 1993, 46(5), 872-894. doi: 10.2165/00003495-199346050-00007 PMID: 7507037
  51. Bonate, P.L.; Arthaud, L.; Cantrell, W.R., Jr; Stephenson, K.; Secrist, J.A., III; Weitman, S. Discovery and development of clofarabine: A nucleoside analogue for treating cancer. Nat. Rev. Drug Discov., 2006, 5(10), 855-863. doi: 10.1038/nrd2055 PMID: 17016426
  52. Kantarjian, H.M.; Jeha, S.; Gandhi, V.; Wess, M.; Faderl, S. Clofarabine: Past, present, and future. Leuk. Lymphoma, 2007, 48(10), 1922-1930. doi: 10.1080/10428190701545644 PMID: 17852710
  53. King, K.M.; Damaraju, V.L.; Vickers, M.F.; Yao, S.Y.; Lang, T.; Tackaberry, T.E.; Mowles, D.A.; Ng, A.M.L.; Young, J.D.; Cass, C.E. A comparison of the transportability, and its role in cytotoxicity, of clofarabine, cladribine, and fludarabine by recombinant human nucleoside transporters produced in three model expression systems. Mol. Pharmacol., 2006, 69(1), 346-353. doi: 10.1124/mol.105.015768 PMID: 16234483
  54. Zhang, J.; Visser, F.; Vickers, M.F.; Lang, T.; Robins, M.J.; Nielsen, L.P.C.; Nowak, I.; Baldwin, S.A.; Young, J.D.; Cass, C.E. Uridine binding motifs of human concentrative nucleoside transporters 1 and 3 produced in Saccharomyces cerevisiae. Mol. Pharmacol., 2003, 64(6), 1512-1520. doi: 10.1124/mol.64.6.1512 PMID: 14645682
  55. Reist, E.J.; Goodman, L. Synthesis of 9-β-D-Arabinofuranosylguanine *. Biochemistry, 1964, 3(1), 15-18. doi: 10.1021/bi00889a004 PMID: 14114497
  56. Lambe, C.U.; Averett, D.R.; Paff, M.T.; Reardon, J.E.; Wilson, J.G.; Krenitsky, T.A. 2-Amino-6-methoxypurine arabinoside: An agent for T-cell malignancies. Cancer Res., 1995, 55(15), 3352-3356. PMID: 7614470
  57. Gandhi, V.; Plunkett, W. Clofarabine and nelarabine: Two new purine nucleoside analogs. Curr. Opin. Oncol., 2006, 18(6), 584-590. doi: 10.1097/01.cco.0000245326.65152.af PMID: 16988579
  58. Kearney, B.P.; Flaherty, J.F.; Shah, J. Tenofovir disoproxil fumarate: Clinical pharmacology and pharmacokinetics. Clin. Pharmacokinet., 2004, 43(9), 595-612. doi: 10.2165/00003088-200443090-00003 PMID: 15217303
  59. Jones, S.A.; Murakami, E.; Delaney, W.; Furman, P.; Hu, J. Noncompetitive inhibition of hepatitis B virus reverse transcriptase protein priming and DNA synthesis by the nucleoside analog clevudine. Antimicrob. Agents Chemother., 2013, 57(9), 4181-4189. doi: 10.1128/AAC.00599-13 PMID: 23774432
  60. Gallant, J.E.; Deresinski, S. Tenofovir disoproxil fumarate. Clin. Infect. Dis., 2003, 37(7), 944-950. doi: 10.1086/378068 PMID: 13130407
  61. Robinson, D.M.; Scott, L.J.; Plosker, G.L. Entecavir. Drugs, 2006, 66(12), 1605-1622. doi: 10.2165/00003495-200666120-00009 PMID: 16956310
  62. Keating, G.M. Entecavir. Drugs, 2011, 71(18), 2511-2529. doi: 10.2165/11208510-000000000-00000 PMID: 22141390
  63. Chang, T.T.; Gish, R.G.; de Man, R.; Gadano, A.; Sollano, J.; Chao, Y.C.; Lok, A.S.; Han, K.H.; Goodman, Z.; Zhu, J.; Cross, A.; DeHertogh, D.; Wilber, R.; Colonno, R.; Apelian, D. A comparison of entecavir and lamivudine for HBeAg-positive chronic hepatitis B. N. Engl. J. Med., 2006, 354(10), 1001-1010. doi: 10.1056/NEJMoa051285 PMID: 16525137
  64. Scott, L.J.; Keating, G.M. Entecavir. Drugs, 2009, 69(8), 1003-1033. doi: 10.2165/00003495-200969080-00005 PMID: 19496629
  65. Pískala, A.; Šorm, F. Nucleic acids components and their analogues. LI. Synthesis of 1-glycosyl derivatives of 5-azauracil and 5-azacytosine. Collect. Czech. Chem. Commun., 1964, 29(9), 2060-2076. doi: 10.1135/cccc19642060
  66. Füller, M.; Klein, M.; Schmidt, E.; Rohde, C.; Göllner, S.; Schulze, I.; Qianli, J.; Berdel, W.; Edemir, B.; Müller-Tidow, C.; Tschanter, P. 5-Azacytidine enhances efficacy of multiple chemotherapy drugs in AML and lung cancer with modulation of CpG methylation. Int. J. Oncol., 2015, 46(3), 1192-1204. doi: 10.3892/ijo.2014.2792 PMID: 25501798
  67. Kaminskas, E.; Farrell, A.T.; Wang, Y.C.; Sridhara, R.; Pazdur, R. FDA drug approval summary: Azacitidine (5-azacytidine, Vidaza) for injectable suspension. Oncologist, 2005, 10(3), 176-182. doi: 10.1634/theoncologist.10-3-176 PMID: 15793220
  68. Müller, A.; Florek, M. 5-azacytidine/ Azacitidine. Recent Results Cancer Res., 2010, 184, 159-170. doi: 10.1007/978-3-642-01222-8_11 PMID: 20072837
  69. Guo, G.; Li, G.; Liu, D.; Yang, Q.J.; Liu, Y.; Jing, Y.K.; Zhao, L.X. Synthesis and antiproliferative activities of 5-azacytidine analogues in human leukemia cells. Molecules, 2008, 13(7), 1487-1500. doi: 10.3390/molecules13071487 PMID: 18719520
  70. Daskalakis, M.; Blagitko-Dorfs, N.; Hackanson, B. Decitabine. Recent Results Cancer Res., 2010, 184, 131-157. doi: 10.1007/978-3-642-01222-8_10 PMID: 20072836
  71. Jabbour, E.; Issa, J.P.; Garcia-Manero, G.; Kantarjian, H. Evolution of decitabine development. Cancer, 2008, 112(11), 2341-2351. doi: 10.1002/cncr.23463 PMID: 18398832
  72. Stresemann, C.; Lyko, F. Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int. J. Cancer, 2008, 123(1), 8-13. doi: 10.1002/ijc.23607 PMID: 18425818
  73. Duschinsky, R.; Pleven, E.; Heidelberger, C. The synthesis of 5-fluoropyrimidines. J. Am. Chem. Soc., 1957, 79(16), 4559-4560. doi: 10.1021/ja01573a087
  74. Parker, W.B.; Cheng, Y.C. Metabolism and mechanism of action of 5-fluorouracil. Pharmacol. Ther., 1990, 48(3), 381-395. doi: 10.1016/0163-7258(90)90056-8 PMID: 1707544
  75. Diasio, R.B.; Harris, B.E. Clinical pharmacology of 5-fluorouracil. Clin. Pharmacokinet., 1989, 16(4), 215-237. doi: 10.2165/00003088-198916040-00002 PMID: 2656050
  76. Heggie, G.D.; Sommadossi, J.P.; Cross, D.S.; Huster, W.J.; Diasio, R.B. Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res., 1987, 47(8), 2203-2206. PMID: 3829006
  77. Sommer, H.; Santi, D.V. Purification and amino acid analysis of an active site peptide from thymidylate synthetase containing covalently bound 5-fluoro-2′-deoxyuridylate and methylenetetrahydrofolate. Biochem. Biophys. Res. Commun., 1974, 57(3), 689-695. doi: 10.1016/0006-291X(74)90601-9 PMID: 4275130
  78. Walwick, E.R.; Roberts, W.K.; Dekker, C.A. Cyclisation during the phosphorylation of uridine and cytidine by polyphosphoric acid-A new route to the O-2, 2′-cyclonucleosides. Proc. Chem. Soc. London, 1959, (3), 84-84.
  79. El-Subbagh, H.I.; Al-Badr, A.A. Cytarabine. Profiles Drug Subst. Excip. Relat. Methodol., 2009, 34, 37-113. doi: 10.1016/S1871-5125(09)34002-9 PMID: 22469172
  80. Baker, W.J.; Royer, G.L., Jr; Weiss, R.B. Cytarabine and neurologic toxicity. J. Clin. Oncol., 1991, 9(4), 679-693. doi: 10.1200/JCO.1991.9.4.679 PMID: 1648599
  81. Hamada, A.; Kawaguchi, T.; Nakano, M. Clinical pharmacokinetics of cytarabine formulations. Clin. Pharmacokinet., 2002, 41(10), 705-718. doi: 10.2165/00003088-200241100-00002 PMID: 12162758
  82. Mini, E.; Nobili, S.; Caciagli, B.; Landini, I.; Mazzei, T. Cellular pharmacology of gemcitabine. Ann. Oncol., 2006, 17(Suppl. 5), v7-v12. doi: 10.1093/annonc/mdj941 PMID: 16807468
  83. Toschi, L.; Finocchiaro, G.; Bartolini, S.; Gioia, V.; Cappuzzo, F. Role of gemcitabine in cancer therapy. Future Oncol., 2005, 1(1), 7-17. doi: 10.1517/14796694.1.1.7 PMID: 16555971
  84. McLeod, G.X.; Hammer, S.M. Zidovudine: Five years later. Ann. Intern. Med., 1992, 117(6), 487-501. doi: 10.7326/0003-4819-117-6-487 PMID: 1503352
  85. Blum, M.R.; Liao, S.H.; Good, S.S.; de Miranda, P. Pharmacokinetics and bioavailability of zidovudine in humans. Am. J. Med., 1988, 85(2A), 189-194. PMID: 3165603
  86. Child, S.; Montaner, J.; Tsoukas, C.; Fanning, M.; Le, T.; Wall, R.A.; Ruedy, J. Canadian multicenter azidothymidine trial: AZT pharmacokinetics. J. Acquir. Immune Defic. Syndr., 1991, 4(9), 865-870. PMID: 1895207
  87. Veal, G.J.; Back, D.J. Metabolism of zidovudine. Gen. Pharmacol., 1995, 26(7), 1469-1475. doi: 10.1016/0306-3623(95)00047-X PMID: 8690233
  88. Langtry, H.D.; Campoli-Richards, D.M. Zidovudine. Drugs, 1989, 37(4), 408-450. doi: 10.2165/00003495-198937040-00003 PMID: 2661194
  89. Tan, C.K.; Rigal, C.; Mian, A.M.; So, A.G.; Downey, K.M. Inhibition of the RNase H activity of HIV reverse transcriptase by azidothymidylate. Biochemistry, 1991, 30(20), 4831-4835. doi: 10.1021/bi00234a001 PMID: 1709809
  90. Hitchcock, M.J.M.; Jaffe, H.S.; Martin, J.C.; Stagg, R.J. Cidofovir, a new agent with potent anti-herpesvirus activity. Antivir. Chem. Chemother., 1996, 7(3), 115-127. doi: 10.1177/095632029600700301
  91. Cundy, K.C. Clinical pharmacokinetics of the antiviral nucleotide analogues cidofovir and adefovir. Clin. Pharmacokinet., 1999, 36(2), 127-143. doi: 10.2165/00003088-199936020-00004 PMID: 10092959
  92. Plosker, G.L.; Noble, S. Cidofovir. Drugs, 1999, 58(2), 325-345. doi: 10.2165/00003495-199958020-00015 PMID: 10473024
  93. Clarke, M.L.; Damaraju, V.L.; Zhang, J.; Mowles, D.; Tackaberry, T.; Lang, T.; Smith, K.M.; Young, J.D.; Tomkinson, B.; Cass, C.E. The role of human nucleoside transporters in cellular uptake of 4′-thio-β-D-arabinofuranosylcytosine and β-D-arabinosylcytosine. Mol. Pharmacol., 2006, 70(1), 303-310. doi: 10.1124/mol.105.021543 PMID: 16617163
  94. Reigner, B.; Blesch, K.; Weidekamm, E. Clinical pharmacokinetics of capecitabine. Clin. Pharmacokinet., 2001, 40(2), 85-104. doi: 10.2165/00003088-200140020-00002 PMID: 11286326
  95. Wagstaff, A.J.; Ibbotson, T.; Goa, K.L. Capecitabine. Drugs, 2003, 63(2), 217-236. doi: 10.2165/00003495-200363020-00009 PMID: 12515569
  96. Mikhail, S.E.; Sun, J.F.; Marshall, J.L. Safety of capecitabine: A review. Expert Opin. Drug Saf., 2010, 9(5), 831-841. doi: 10.1517/14740338.2010.511610 PMID: 20722491
  97. Walko, C.M.; Lindley, C. Capecitabine: A review. Clin. Ther., 2005, 27(1), 23-44. doi: 10.1016/j.clinthera.2005.01.005 PMID: 15763604

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers