Investigation of the functional role of the conserved sequence at the 5’-end of the fourth intron of the mod(mdg4) gene in trans-splicing in Drosophila melanogaster
- 作者: Soldatova I.V.1, Beginyazova O.1, Georgiev P.G.1, Tikhonov M.V.1
-
隶属关系:
- Institute of Gene Biology Russian Academy of Sciences
- 期: 卷 521, 编号 1 (2025)
- 页面: 219-224
- 栏目: Articles
- URL: https://edgccjournal.org/2686-7389/article/view/684010
- DOI: https://doi.org/10.31857/S2686738925020098
- ID: 684010
如何引用文章
详细
Alternative splicing is an important mechanism that provides genetic diversity of proteins. Unique loci have been identified in Drosophila melanogaster, where mRNA diversity arises as a result of trans-splicing — a process in which exons from different pre-mRNAs are joined together. The trans-splicing in the mod(mdg4) locus, which encodes more than 31 isoforms, has been studied in detail. Important elements for this process include previously described conserved sequences in the fourth intron. The aim of this study is to further characterize the conserved motifs of the fourth intron, specifically the element at the 5’-end of the intron. Using model transgenic lines, it has been shown that introduced changes in the sequence of the studied element lead to a disruption of trans-splicing. In contrast, similar changes in the endogenous locus did not result in a disruption of trans-splicing. Thus, the conserved element plays a role in trans-splicing but is not critical.
全文:

作者简介
Iu. Soldatova
Institute of Gene Biology Russian Academy of Sciences
编辑信件的主要联系方式.
Email: me@mtih.me
俄罗斯联邦, Moscow
O. Beginyazova
Institute of Gene Biology Russian Academy of Sciences
Email: me@mtih.me
俄罗斯联邦, Moscow
P. Georgiev
Institute of Gene Biology Russian Academy of Sciences
Email: me@mtih.me
Academician of the RAS
俄罗斯联邦, MoscowM. Tikhonov
Institute of Gene Biology Russian Academy of Sciences
Email: me@mtih.me
俄罗斯联邦, Moscow
参考
- Wright C.J., Smith C.W.J., Jiggins C.D. Alternative splicing as a source of phenotypic diversity. // Nat Rev Genet, 2022, № 23(11): P. 697–710.
- Labrador M., Mongelard F., Plata-Rengifo P., et al. Protein encoding by both DNA strands. // Nature, 2001, № 409(6823): P. 1000.
- Horiuchi T., Giniger E., Aigaki T. Alternative trans-splicing of constant and variable exons of a Drosophila axon guidance gene, lola. // Genes Dev, 2003, № 17(20): P. 2496–501.
- Shi X., Singh S., Lin E., et al. Chimeric RNAs in cancer. // Adv Clin Chem, 2021, № 100: P. 1–35.
- Tikhonov M., Utkina M., Maksimenko O., et al. Conserved sequences in the Drosophila mod(mdg4) intron promote poly(A)-independent transcription termination and trans-splicing. // Nucleic Acids Res, 2018, № 46(20): P. 10608–10618.
- Gao J.L., Fan Y.J., Wang X.Y., et al. A conserved intronic U1 snRNP-binding sequence promotes trans-splicing in Drosophila. // Genes Dev, 2015, № 29(7): P. 760–71.
- McManus C.J., Duff M.O., Eipper-Mains J., et al. Global analysis of trans-splicing in Drosophila. // Proc Natl Acad Sci USA, 2010, № 107(29): P. 12975–9.
- Bonchuk A.N., Balagurov K.I., Baradaran R., et al. The Arthropoda-specific Tramtrack group BTB protein domains use previously unknown interface to form hexamers. // Elife, 2024, № 13.
- Melnikova L., Kostyuchenko M., Molodina V., et al. Multiple interactions are involved in a highly specific association of the Mod(mdg4)-67.2 isoform with the Su(Hw) sites in Drosophila. // Open Biol, 2017, № 7(10).
- Soldatova Iu., Shepelev M., Georgiev P., et al. A Novel Mechanism for Transcription Termination in the mod(mdg4) Locus of Drosophila melanogaster. // Biology (Basel), 2024 in press.
- Kaida D., Berg M.G., Younis I., et al. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. // Nature, 2010, № 468(7324): P. 664–8.
- Tikhonov M., Georgiev P., Maksimenko O. Competition within Introns: Splicing Wins over Polyadenylation via a General Mechanism. // Acta Naturae, 2013, № 5(4): P. 52–61.
- Bischof J., Maeda R.K., Hediger M., et al. An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. // Proc Natl Acad Sci U S A, 2007, № 104(9): P. 3312–7.
- Hernandez G., Vazquez-Pianzola P., Sierra J.M., et al. Internal ribosome entry site drives cap-independent translation of reaper and heat shock protein 70 mRNAs in Drosophila embryos. // RNA, 2004, № 10(11): P. 1783-–97.
- Zhang X., Koolhaas W.H., Schnorrer F. A versatile two-step CRISPR- and RMCE-based strategy for efficient genome engineering in Drosophila. // G3 (Bethesda), 2014, № 4(12): P. 2409–18.
- Ozturk-Colak A., Marygold S.J., Antonazzo G., et al. FlyBase: updates to the Drosophila genes and genomes database. // Genetics, 2024, № 227(1).
- Crooks G.E., Hon G., Chandonia J.M., et al. WebLogo: a sequence logo generator. // Genome Res, 2004, № 14(6): P. 1188–90.
补充文件
