GEOCHEMICAL AND Sr-Nd ISOTOPE SYSTEMATICS OF THE LATE PERMIAN–EARLY TRIASSIC TRAPS FROM THE KUZNETSK BASIN: MAGMA SOURCES AND CORRELATION WITH THE NORIL’SK REGION VOLCANICS

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The study provides whole-rock geochemical and Rb-Sr and Sm-Nd isotope examinations of Permian-Triassic volcanics (basalts, basaltic andesites) and sills (trachydolerites, monzodiorites) from the Kuznetsk Basin, which is part of the Siberian Large Igneous Province. It is shown that the volcanic section of the Kuznetsk Basin consists of the Lower (I and II units: TiO2 = 1.6–1.9 wt.%, Gd/Yb = 2.0–2.1) and Upper (III–VIII units: TiO2 = 1.4–1.8 wt.%, Gd/Yb = 1.7–1.9) Sequences. The Mayzass sill is geochemically correlated with the Unit II basaltic andesite of the Lower Sequence, and the Syrkashev sill is geochemically akin to the Upper Sequence. The Kuznetsk traps originated from the partial melting of a Sr-Nd isotopically heterogeneous subduction-modified lithospheric mantle. They are geochemically comparable to low-Ti basalts of the low–middle Nadezhdinsky suite from the Noril’sk region, but differ in Sr-Nd isotope composition. The Sr-Nd isotope signatures of the uncontaminated lavas and Syrkashev sill rocks (εNd(T) = (+4.6)–(+2.4), (87Sr/86Sr)T = 0.7047–0.7054) are inherited from the ancient lithospheric mantle and do not represent the contribution of the Siberian plume. The Mayzass sill rocks (εNd(T) = (+2.2)–(+2.1); (87Sr/86Sr)T = 0.7055–0.7063)are derived from a parental melt contaminated with crustal carbonates.

作者简介

T. Svetlitskaya

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: svt@igm.nsc.ru
Russian Federation, Novosibirsk

参考

  1. Reichow M.K., Pringle M.S., Al’Mukhamedov A.I., Allen M.B., Andreichev V.L., Buslov M.M., Davies C.E., Fedoseev G.S., Fitton J.G., Inger S., Medvedev A.Ya., Mitchell C., Puchkov V.N., Safonova I.Yu., Scott R.A., Saunders A.D. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis // Earth Planet. Sci. Lett. 2009. V. 277. № 1–2. P. 9–20. https://doi.org/10.1016/j.epsl.2008.09.030
  2. Burgess S.D., Bowring S.A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction // Sci. Adv. 2015. V. 1. № 7. e1500470. https://doi.org/10.1126/sciadv.15004
  3. Svetlitskaya T.V., Nevolko P.A. Late Permian–Early Triassic traps of the Kuznetsk Basin, Russia: Geochemistry and petrogenesis in respect to an extension of the Siberian Large Igneous Province // Gondwana Res. 2016. V. 39. P. 57–76. https://doi.org/10.1016/j.gr.2016.06.014
  4. Крук Н.Н., Плотников А.В., Владимиров А.Г., Кутолин В.А. Геохимия и геодинамические условия формирования траппов Кузбасса // ДАН. 1999. Т. 369. № 6. С. 812–815.
  5. Fedorenko V.A., Lightfoot P.C., Naldrett A.J., Czaman-ske G.K., Hawkesworth C.J., Wooden J.L., Ebel D.S. Petrogenesis of the flood-basalt sequence at Noril’sk, North Central Siberia // Int. Geol. Rev. 1996. V. 38. № 2. P. 99–135. https://doi.org/10.1080/00206819709465327
  6. Lightfoot P.C., Hawkesworth C.J., Hergt J., Naldrett A.J., Gorbachev N.S., Fedorenko V.A., Doherty W. Remobilisation of the continental lithosphere by a mantle plume: major-, trace-element, and Sr-, Nd-, and Pb-isotope evidence from picritic and tholeiitic lavas of the Noril’sk District, Siberian Trap, Russia // Contrib. Mineral. Petrol. 1993. V. 114. P. 171–188. https://doi.org/10.1007/BF00307754
  7. Wooden J.L., Czamanske G.K., Fedorenko V.A., Arndt N.T., Chauvel C., Bouse R.M., King B.-S.W., Knight R.J., Siems D.F. Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril’sk area, Siberia // Geochim. Cosmochim. Acta. 1993. V. 57. № 15. P. 3677–3704. https://doi.org/10.1016/0016-7037(93)90149-Q
  8. Goldstein S.J., Jacobsen S.B. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution // Earth Planet. Sci. Lett. 1988. V. 87. № 3. P. 249–265. https://doi.org/10.1016/0012-821X(88)90013-1
  9. Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications or mantle composition and processes // Geo L. Soc. Spe Publ. 1989. V. 42. № 1. P. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
  10. Pearce J.A. The role of sub-continental lithosphere in magma genesis at destructive plate margins // Continental basalts and mantle xenoliths. Shiva, Nantwich. 1983. P. 230–249.
  11. Lin P.N., Stern R.J., Bloomer S.H. Shoshonitic volcanism in the Northern Mariana Arc: 2. Large-ion lithophile and rare earth element abundances: Evidence for the source of incompatible element enrichments in intraoceanic arcs // J. Geophys. Res. 1989. V. 94. P. 4497–4514. https://doi.org/10.1029/JB094iB04p04497
  12. Pearce J.A., Stern R.J., Bloomer S.H., Fryer P. Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components // Geochem. Geophy. Geosy. 2005. V. 6. № 719. Q07006. https://doi.org/10.1029/2004GC000895
  13. Pearce J.A., Ernst R.E., Peate D.W., Rogers C. LIP printing: Use of immobile element proxies to characterize Large Igneous Provinces in the geologic record // Lithos. 2021. V. 392–393. 106068. https://doi.org/10.1016/j.lithos.2021.106068
  14. Sharma M., Basu A.R., Nesterenko G.V. Nd-Sr isotopes, petrochemistry, and origin of the Siberian flood basalts, USSR // Geochim. Cosmochim. Acta. 1991. V. 55. № 4. P. 1183–1192. https://doi.org/10.1016/0016-7037(91)90177-7
  15. Sharma M., Basu A.R., Nesterenko G.V. Temporal Sr-, Nd- and Pb-isotopic variations in the Siberian flood basalts: Implications for the plume-source characteristics // Earth Planet. Sci. Lett. 1992. V. 113. № 3. P. 365–381. https://doi.org/10.1016/0012-821x(92)90139-m
  16. Покровский Б.Г. Коровая контаминация мантийный магм по данным изотопной геохимии. М.: Наука, 2000. 228 с.
  17. Фор Г. Основы изотопной геологии. М.: Мир, 1989. 590 с.
  18. Hanyu T., Nakamura E. Constraints on HIMU and EM by Sr and Nd isotopes re-examined // Earth. Planet. Sp. 2000. V. 52. P. 61–70. https://doi.org/10.1186/BF03351614
  19. Врублевский В.В., Котельников А.Д., Изох А.Э. Возраст, петрологические и геохимические условия формирования Когтахского габбро-монцонитового комплекса Кузнецкого Алатау // Геология и Геофизика. 2018. Т. 59. № 7. С. 900–830. https://doi.org/10.15372/GiG20180702
  20. Li Z.X., Bogdanova S.V., Collins A.S., Davidson A., De Waele B., Ernst R.E., Fitzsimons I.C.W., Fuck R.A., Gladkochub D.P., Jacobs J., Karlstrom K.E., Lu S., Natapov L.M., Pease V., Pisarevsky S.A., Thrane K., Vernikovsky V. Assembly, configuration, and break-up history of Rodinia: A synthesis // Precambrian Res. 2008. V. 160. № 1–2. P. 179–210. https://doi.org/10.1016/j.precamres.2007.04.021

补充文件

附件文件
动作
1. JATS XML
2.

下载 (3MB)
3.

下载 (761KB)
4.

下载 (661KB)
5.

下载 (571KB)

版权所有 © Т.В. Светлицкая, 2023