METAMORPHISM OF UNI SUITE AS AN INDICATOR OF EARLY PRECAMBRIAN COLLISION PROCESSES IN THE VYATKA BELT, BASEMENT OF THE VOLGA-URALIA
- Authors: Pilitsyna T.A.1,2, Erofeeva K.G.1, Samsonov A.V.1, Postnikov A.V.3, Varlamov D.A.4
-
Affiliations:
- Institute of Ore Geology, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
- Institute of Mineralogy, Geochemistry and Crystal Chemistry of Rare Elements
- Gubkin Russian State University of Oil and Gas (National Research University)
- Korzhinsky Institute of Experimental Mineralogy, Russian Academy of Sciences
- Issue: Vol 510, No 1 (2023)
- Pages: 52-60
- Section: PETROLOGY
- Submitted: 30.01.2025
- Published: 01.05.2023
- URL: https://edgccjournal.org/2686-7397/article/view/649667
- DOI: https://doi.org/10.31857/S2686739722602836
- EDN: https://elibrary.ru/FEXQGG
- ID: 649667
Cite item
Abstract
In the central part of the Vyatka belt, sandwiched between the Archean blocks in the northeast of the Volga-Ural segment of the East European craton, according to the core data from two deep wells, the following mineral parageneses were established in the metapelites of the Uni suite: (1) Pl + Ms + Bt + Qz + Kfs + And ± Chl and (2) Pl + Bt + Qz + Kfs + Grt + Sil ± Ms ± Chl (without staurolite and cordierite), corresponding to moderate pressure metamorphism of the amphibolite facies. To determine the P-T conditions for these parageneses a set of methods was used, including classical (Grt-Bt, GASP, Ti-in-Bt, Ms-Bt) and multi-equilibrium thermobarometry (winTWQ 2.34), as well as the isopleth intersection method on pseudosection diagrams (GeoPS 3.2.2.128). The calculated P-T values of metamorphism are 520–650°C (or up to 690°C according to the isopleth method) and 2–5.4 kbar. Paragenesis (2) rock was accompanied by anatexis in the water-saturated system. Zoning can be distinguished in the metamorphism of the rocks, it belongs to a relatively shallow type, to the andalusite-sillimanite subfacies.
About the authors
T. A. Pilitsyna
Institute of Ore Geology, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences; Institute of Mineralogy, Geochemistry and Crystal Chemistry of Rare Elements
Author for correspondence.
Email: allafia@yandex.ru
Russian, Moscow; Russian, Moscow
K. G. Erofeeva
Institute of Ore Geology, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
Email: allafia@yandex.ru
Russian, Moscow
A. V. Samsonov
Institute of Ore Geology, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
Email: allafia@yandex.ru
Russian, Moscow
A. V. Postnikov
Gubkin Russian State University of Oil and Gas (National Research University)
Email: allafia@yandex.ru
Russian, Moscow
D. A. Varlamov
Korzhinsky Institute of Experimental Mineralogy, Russian Academy of Sciences
Email: allafia@yandex.ru
Russian, Moscow, Chernogolovka
References
- Кристаллический фундамент Татарстана и проблемы нефтегазоносности. Муслимов Р.Х., Лапинская Т.А. (Ред.). Казань: “Дента”. 1996. 487 с.
- Ерофеева К.Г., Самсонов А.В., Спиридонов В.А. и др. Новый палеопротерозойский ороген на северо-востоке Восточно-Европейского кратона: первые данные по супракрустальным породам и гранитоидам Вятского пояса // М-лы XIII Всероссийского петрографического совещания. Иркутск: Изд-во Института географии им. В.Б. Сочавы СО РАН, 2021. Т. 1. С. 198–201.
- Bogdanova S.V., Gorbatschev R., Garetsky R.G. EUROPE. East European Craton // Reference Module in Earth Systems and Environmental Sciences. 2016. P. 1–18.
- Богданова С.В. Земная кора Русской плиты в раннем докембрии // Тр. ГИН АН СССР. 1986. Вып. 408. 224 с.
- Warr L. IMA-CNMNC approved mineral symbols // Mineralogical Magazine. 2021. P. 1–35.
- Spear F.S. Metamorphic phase equilibria and pressure-temperature-time paths. Washington DC: Mineralogical Society of America Monograph, 1993. 799 p.
- Holdaway M.J. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer // American Mineralogist. 2000. V. 85. P. 881–892.
- Holdaway M.J. Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer // American Mineralogist. 2001. V. 86. P. 1117–1129.
- Wu C.-M., Chen H.-X. Revised Ti-in-biotite geothermometer for ilmenite- or rutile-bearing crustal metapelites // Science Bulletin. 2015. V. 60 (1).
- Hoisch D.A. Muscovite-biotite geothermometek // American Mineralogist. 1989. 74 (5–6). P. 565–572.
- Weinberg R.F., Hasalova P. Water-fluxed melting of the continental crust: A review // Lithos. 2015. V. 212–215. P. 158–188.
- Le Breton N., Thompson A.B. Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis // Contributions to Mineralogy and Petrology. 1988. V. 99. P. 226–237.
- Patiño Douce A.E. Effects of pressure and H2O content on the compositions of primary crustal melts // Transactions of the Royal Society of Edinburgh: Earth Sciences. 1996. 87. P. 11–21.
- Brown M. Prograde and retrograde processes in migmatites revisited // Journal of Metamorphic Geology. 2002. 20. P. 25–40.
- Johannes W., Holtz F. Petrogenesis and Experimental Petrology of Granitic Rocks. Minerals and Rocks 22. Springer, Berlin. 1996. P. 115–275.
- Velde B. Phengite micas: Synthesis, stability, and natural occurrence // Amer. J. Sci. 1965. V. 263. P. 886–913.
- Савко К., Самсонов А., Сальникова Е., Котов А., Базиков Н. HT/LP метаморфическая зональность восточной части Воронежского кристаллического массива: возраст, условия и геодинамическая обстановка формированиям // Петрология. 2015. Т. 23. № 6. С. 607–623.
- Лиханов И.И., Ревердатто В.В. Свидетельства полиметаморфической эволюции докембрийских геологических комплексов Заангарья Енисейского кряжа // Геосферные исследования. 2021. № 3. С. 19–4.
- Bushmin S.A., Glebovitsky V.A. Scheme of mineral facies of metamorphic rocks and its application to the Fennoscandian shield with representative sites of orogenic gold mineralization // Proceedings KarRC of Russian Academy of Science. №2. Precambrian Geology Series. 2016. p. 3–27.
- Burg J.P., Schmalhol S.M. Viscous heating allows thrusting to overcome crustal scale buckling: Numerical investigation with application to the Himalayan syntaxes // Earth Planet. Sci. Let. 2008. V. 274. P. 189–203.
Supplementary files
