COPPER ISOTOPE COMPOSITION OF Pt-Fe MINERALS FROM THE NIZHNY TAGIL MASSIF, MIDDLE URALS: FIRST RESULTS
- Authors: Malitch K.N.1, Soloshenko N.G.1, Votyakov S.L.1, Badanina I.Y.1, Okuneva T.G.1, Sidoruk A.R.1
-
Affiliations:
- Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
- Issue: Vol 509, No 2 (2023)
- Pages: 190-197
- Section: GEOCHEMISTRY
- Submitted: 30.01.2025
- Published: 01.02.2023
- URL: https://edgccjournal.org/2686-7397/article/view/649685
- DOI: https://doi.org/10.31857/S2686739722602721
- EDN: https://elibrary.ru/NYPQBB
- ID: 649685
Cite item
Abstract
In order to identify the source of copper, for the first time in world practice, the features of the Cu-isotopic composition of Pt–Fe minerals are characterized using the example of the Nizhny Tagil massif, the world standard of Ural-type zoned complexes. The chemical and isotopic composition of Pt-Fe minerals were determined by electron probe microanalysis, chemical sample preparation with selective separation of copper from the solution of the studied sample, and subsequent high-precision determination of the δ65Cu value using multiple-collector inductively coupled plasma mass-spectrometry. The majority of platinum group minerals (PGM) from bedrock deposits of the Nizhny Tagil massif, represented by chromitites of the Alexandrovsky and Krutoy logs, are formed by Pt–Fe minerals, among which high-temperature ferroan platinum (Pt2Fe) with inclusions of Os–Ir alloys and laurite (RuS2) dominates. The concentrations of copper in the studied samples of ferroan platinum vary in the range of 0.4–1.4 wt. % Cu. The δ65Cu values for Cu-bearing PGM vary in the range from –0.37 to 0.26‰. Secondary low-temperature PGM assemblage is represented by solid solutions of tetraferroplatinum (PtFe) – tulameenite (PtFe0.5Cu0.5) series. The concentrations of copper in these PGM vary in the range of 6.8–11.3 wt. %; the values of δ65Cu are characterized by lighter isotopic compositions of copper that range from –1.15 to –0.72‰. The lightening of the Cu-isotopic composition in secondary Cu-bearing PGM compared with that in ferroan platinum (δ65Cu = –1.01 ± 0.17, n = 8 and δ65Cu = 0.03 ± 0.23, n = 7, respectively) is consistent with the secondary nature of isotopic variations, due to the evolution of the composition of the ore-forming fluid during the low-temperature formation of the tetraferroplatinum (PtFe) – tulameenite (PtFe0.5Cu0.5) series.
About the authors
K. N. Malitch
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: dunite@yandex.ru
Russian Federation, Yekaterinburg
N. G. Soloshenko
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
Email: vsl.yndx@yandex.ru
Russian Federation, Yekaterinburg
S. L. Votyakov
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
Author for correspondence.
Email: vsl.yndx@yandex.ru
Russian Federation, Yekaterinburg
I. Yu. Badanina
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
Email: vsl.yndx@yandex.ru
Russian Federation, Yekaterinburg
T. G. Okuneva
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
Email: vsl.yndx@yandex.ru
Russian Federation, Yekaterinburg
A. R. Sidoruk
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
Email: vsl.yndx@yandex.ru
Russian Federation, Yekaterinburg
References
- Высоцкий Н.К. Платина и районы ее добычи, Ч. I-IV. Петроград, 1925. 692 с.
- Tolstykh N.D., Sidorov E.G., Krivenko A.P. Platinum-group element placers associated with Ural-Alaska type complexes // Exploration for platinum-group element deposits (Mungall J.E. ed). Mineralogical Association of Canada, Short Course Series. 2005. V. 35. P 113–143.
- Заварицкий А.Н. Коренные месторождения платины на Урале. Л.: Изд. Геологического комитета, 1928. 56 с.
- Auge T., Genna A., Legendre O., Ivanov K.S., Volchen-ko Yu.A. Primary platinum mineralization in the Nizhny Tagil and Kachkanar ultramafic complexes, Urals, Russia: A genetic model for PGE concentration in chromite-rich zones // Economic Geology. 2005. V. 100. P. 707–732.
- Tolstykh N., Kozlov A., Telegin Yu. Platinum mineralization of the Svetly Bor and Nizhny Tagil intrusions, Ural Platinum Belt // Ore Geology Reviews. 2015. V. 67. P. 234–243.
- Малич К.Н., Степанов С.Ю., Баданина И.Ю., Хиллер В.В. Коренная платиноидная минерализация зональных клинопироксенит-дунитовых массивов Среднего Урала (Россия) // ДАН. 2017. Т. 476. № 4. С. 440–444.
- Бетехтин А.Г. Платина и другие минералы платиновой группы. М.: Изд. АН СССР, 1935. 148 с.
- Генкин А.Д. Последовательность и условия образования минералов платиновой группы в Нижнетагильском массиве // Геология рудных месторождений. 1997. Т. 39. № 1. С. 41–48.
- Tessalina S.G., Malitch K.N., Augé T., Puchkov V.N., Belousova E., McInnes B.I.A. Origin of the Nizhny Tagil clinopyroxenite-dunite massif (Uralian Platinum Belt, Russia): insights from PGE and Os isotope systematics // Journal of Petrology. 2015. V. 56. № 12. P. 2297–2318.
- Золоев К.К., Волченко Ю.А., Коротеев В.А., Мала-хов И.А., Мардиросьян А.Н., Хрыпов В.Н. Платинометальное оруденение в геологических комплексах Урала. Екатеринбург: ОАО “Уральская геологосъемочная экспедиция”, 2001. 199 с.
- Пушкарев Е.В., Аникина Е.В., Гарути Дж., Заккарини Ф. Хром-платиновое оруденение нижнетагильского типа на Урале: структурно-вещественная характеристика и проблема генезиса // Литосфера. 2007. № 3. С. 28–65.
- Шмелёв В.Р., Филиппова С.Д. Структура и механизм формирования Нижнетагильского дунит-клинопироксенитового массива (Средний Урал) // Геотектоника. 2010. 2010. № 4. С. 65–86.
- Малич К.Н., Ефимов А.А., Баданина И.Ю. Контрастные минеральные ассоциации платиноидов хромититов Нижне-Тагильского и Гулинского массивов (Россия): состав, источники вещества, возраст // ДАН. 2011. Т. 441. № 1. С. 83–87.
- Okuneva T.G., Karpova S.V., Streletskaya M.V., Solo-shenko N.G., Kiseleva D.V. The method for Cu and Zn isotope ratio determination by MC ICP-MS using the AG MP-1 resin // Geodynamics & Tectonophysics. 2022. V. 13 (2s).
- Maréchal C., Albarède F. Ion-exchange fractionation of copper and zinc isotopes // Geochimica et Cosmochimica Acta. 2002. V. 66. P. 1499–1509.
- Cabri L.J., Feather C.E. Platinum-iron alloys: a nomenclature based on a study of natural and synthetic alloys // Canadian Mineralogist. 1975. V. 13. P. 117–126.
- Larson P.B., Maher K., Ramos F.C., Chang Z.S., Gaspar M., Meinert L.D. Copper isotope ratios in magmatic and hydrothermal ore-forming environments // Chemical Geology. 2003. V. 201. № 3–4. P. 337–350.
- Mathur R., Ruiz J., Casselman M.J., Megaw P., van Egmond R. Use of Cu isotopes to distinguish primary and secondary Cu mineralization in the Canariaco Norte porphyry copper deposit, Northern Peru // Mineralium Deposita. 2012. V. 47. P. 755–762.
- Binary Alloy Phase Diagrams. Massalski T.B. (ed.) Materials Park (Ohio): ASM Intern., 1993. 2224 p.
- Graham S., Pearson N., Jackson S., Griffin W., O’Reil-ly S.Y. Tracing Cu and Fe from source to porphyry: in situ determination of Cu and Fe isotope ratios in sulfides from the Grasberg Cu-Au deposit // Chemical Geology. 2004. V. 207. P. 147–169.
Supplementary files
