ON SIMILARITIES BETWEEN DEFORMATION PROCESSES PRECEDING ICE SHOCKS AND TECTONIC EARTHQUAKES

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The instrumental monitoring reveals an autowave nature of ice deformation behavior prior to ice shocks. A few minutes or the first tens of minutes before the shock, this process shows an increase in the amplitude of oscillations, often with a multi-fold reduction in their period. An autowave dynamics of ice deformations is due to self-organization of a structurally heterogeneous ice environment under critical conditions. The self-organization ability of the deformation process is confirmed by the results of ice deformation time series processing by the structural function curvature analysis method (SFCAM) and by the Lomb-Scargle periodogram method. The results of seismic monitoring of ice showed that autowave processes are characterized by constant frequency of 0.1 Hz. Taking into account the ice deformation and microseismic fluctuation features preceding the ice shocks, spectral analysis was performed on the data of deformation and seismicity monitoring at the Buguldeika geodynamic polygon before the Kudara earthquake. According to the results, 14 hours before the earthquake the seismogram recorded a gradual increase in auto-oscillation amplitudes in the frequency range from 0.01 to 0.1 Hz. The maximum amplitude increase is 19.5 against the background.

About the authors

S. A. Bornyakov

Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: bornyak@crust.irk.ru
Russian, Irkutsk

A. A. Dobrynina

Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences

Email: bornyak@crust.irk.ru
Russian, Irkutsk

A. N. Shagun

Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences

Email: bornyak@crust.irk.ru
Russian, Irkutsk

V. A. Sankov

Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences

Email: bornyak@crust.irk.ru
Russian, Irkutsk

D. V. Salko

Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences

Email: bornyak@crust.irk.ru
Russian, Irkutsk

A. I. Miroshnichenko

Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences

Email: bornyak@crust.irk.ru
Russian, Irkutsk

G. V. Vstovsky

Melnikov Central Research and Design Institute of Building Structures

Email: bornyak@crust.irk.ru
Russian, Moscow

A. E. Sintsov

Open Joint Stock Company “Safety”

Email: bornyak@crust.irk.ru
Russian, Moscow

References

  1. Добрецов Н.Л., Псахье С.Г., Ружич В.В., Попов В.Л., Шилько Е.В., Гранин Н.Г., Тимофеев В.Ю., Астафуров С.В., Димаки А.В., Старчевич Я. Ледовый покров озера Байкал как модельная среда для изучения тектонических процессов в земной коре // ДАН. 2007. Т. 412. № 5. С. 656‒660.
  2. Псахье С.Г., Шилько Е.В., Астафуров С.В., Димаки А.В., Ружич В.В., Панченко А.Ю. Модельные исследования процессов возникновения и развития деформационных структур субдукционного типа в ледовом покрове озера Байкал // Физическая мезомеханика. 2008. Т. 11. № 1. С. 55‒65.
  3. Ружич В.В., Псахье С.Г., Черных Е.Н., Борняков С.А., Гранин Н.Г. Деформации и сейсмические явления в ледяном покрове озера Байкал // Геология и геофизика. 2009. Т. 50. № 3. С. 289‒299.
  4. Салко Д.В., Борняков С.А. Автоматизированная система для мониторинга геофизических параметров на геодинамических полигонах // Приборы. 2014. № 6. С. 24‒28.
  5. Хакен Г. Синергетика. М.: Мир, 1980. 404 с.
  6. Пригожин И., Кондепуди Д. Современная термодинамика: от тепловых двигателей до диссипативных структур. М.: Мир, 2002. 460 с.
  7. Соболев Г.А., Пономарев А.В. Физика землетрясений и предвестники. М.: Наука, 2003. 270 с.
  8. Pralong A. Oscilations in critical shearing: fpplications to fractures in glaciers // Nonlin. Processes Geophes. 2006. V. 13. P. 681‒683.
  9. Vstovsky G.V. Factual revelation of correlation lengths hierarchy in micro- and nanostructures by scanning probe microscopy data // Mater. Sci. 2006. V. 12. P. 262–270.
  10. Lomb N.R. Least-squares frequency analysis of unequally spaced data // Astrophys. Sp. Sci. 1976. V. 39. P. 447‒462. https://doi.org/10.1007/BF00648343
  11. Scargle J.D. Studies in astronomical time series analysis. 2. Statistical aspects of spectral analysis of unevenly spaced data // The Astrophysical Journal. 1982. V. 263. P. 835‒853.
  12. Scargle J.D. Studies in astronomical time series analysis. 3. Fourier transforms. Autocorrelation function and cross-correlationfunctions of unevenly spaced data // The Astrophysical Journal. 1989. V. 343. P. 874‒887. https://doi.org/10.1086/167757

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (953KB)
3.

Download (1MB)
4.

Download (53KB)
5.

Download (445KB)
6.

Download (481KB)

Copyright (c) 2023 С.А. Борняков, А.А. Добрынина, А.Н. Шагун, В.А. Саньков, Д.В. Салко, А.И. Мирошниченко, Г.В. Встовский, А.Е. Синцов