TWO STAGES OF ASSEMBLY OF THE PANGEA SUPERCONTINENT IN THE POLAR URALS: FIRST U/Pb (LA-ICP-MS) AND 40Ar/39Ar AGES OF THE YARKEU COMPLEX
- Authors: Sobolev I.D.1, Novikova A.S.2, Vikentyev I.V.1, Sheshukov V.S.2, Dubensky A.S.2, Travin A.V.3, Varlamov D.A.4, Bortnikov N.S.1
-
Affiliations:
- Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry of the Russian Academy of Sciences
- Geological institute of the Russian Academy of Sciences
- V.S. Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences
- Institute of Experimental Mineralogy of the Russian Academy of Sciences
- Issue: Vol 508, No 2 (2023)
- Pages: 164-172
- Section: GEOLOGY
- Submitted: 30.01.2025
- Published: 01.02.2023
- URL: https://edgccjournal.org/2686-7397/article/view/649719
- DOI: https://doi.org/10.31857/S2686739722602423
- EDN: https://elibrary.ru/SQSRXQ
- ID: 649719
Cite item
Abstract
In the Polar Urals, there are few small granitoid intrusions (Yarkeu, Yayu and Pogurei complexes), which are usually associated with the Ural collision. Their Carboniferous-Early Permian age, in most cases, is based on methodologically outdated K/Ar dates, and is also assumed from field geological relationships. We have studied the monzonitoids of the Yarkeu petrotypical pluton, one of the largest such intrusions, and for the first time obtained Late Precambrian U–Pb LA-ICP-MS (zircon) and 40Ar/39Ar (amphibole) ages of 687 ± 3, 669 ± 8 Ma years, respectively. Water-saturated fluid regime (presence of magmatic amphibole and high water content in it, 4.5–5.6 wt %,), hypabyssal formation conditions (P = 2.1–3.5 kbar, T = 871–960°C), features of the chemical composition of monzonitoids (low TiO2 (0.6–0.8 wt %) and CaO (3.6–6.3 wt %) contents, high Al2O3 (16.6–18.0 wt %) and K2O (1.7–4.6 wt %), enrichment in large-ion lithophile elements relatively high field strength and rare earth elements, Ta-Nb minimum and Pb maximum), as well as metallogenic specialization in Cu and Mo (±Pb, Hg, Au), indicate the formation of the rocks of the Yarkeu complex in a subuction-related setting in a fairly thick continental crust. Isotopic clocks in these monzonitoids captured two stages of the assembly of the Pangea supercontinent: the earliest stage in the Late Precambrian, when monzonitoids were formed on the active Bolshezemel margin of Arctida, and one of the final stages in the Middle to Late Carboniferous, when the rocks underwent metamorphism due to the closure of the Paleo-Ural ocean and the onset of collision between Arkt-Laurussia and Siberia.
About the authors
I. D. Sobolev
Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry of the Russian Academy of Sciences
Author for correspondence.
Email: sobolev_id@mail.ru
Russian Federation,
Moscow
A. S. Novikova
Geological institute of the Russian Academy of Sciences
Email: sobolev_id@mail.ru
Russian Federation, Moscow
I. V. Vikentyev
Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry of the Russian Academy of Sciences
Email: sobolev_id@mail.ru
Russian Federation,
Moscow
V. S. Sheshukov
Geological institute of the Russian Academy of Sciences
Email: sobolev_id@mail.ru
Russian Federation, Moscow
A. S. Dubensky
Geological institute of the Russian Academy of Sciences
Email: sobolev_id@mail.ru
Russian Federation, Moscow
A. V. Travin
V.S. Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences
Email: sobolev_id@mail.ru
Russian Federation,
Novosibirsk
D. A. Varlamov
Institute of Experimental Mineralogy of the Russian Academy of Sciences
Email: sobolev_id@mail.ru
Russian Federation, Chernogolovka
N. S. Bortnikov
Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry of the Russian Academy of Sciences
Email: sobolev_id@mail.ru
Russian Federation,
Moscow
References
- Государственная геологическая карта Российской Федерации. Масштаб 1:200 000 (второе издание). Серия Полярно-Уральская. Лист Q41-XII / Ред. Л. Л. Подсосова, А. П. Казак. Объяснительная записка. СПб.: ВСЕГЕИ, 2001. 213 с.
- Государственная геологическая карта Российской Федерации. Масштаб 1:1 000 000 (третье поколение). Серия Уральская. Лист Q-41 (Воркута) / Ред. В.П. Водолазская. Объяснительная записка. СПб.: ВСЕГЕИ, 2007. 541 с.
- Государственная геологическая карта Российской Федерации. Масштаб 1:200 000 (второе издание). Серия Полярно-Уральская. Лист Q-42-VII, VIII (Обской) / Ред. А.П. Казак. Объяснительная записка. СПб.: ВСЕГЕИ, 2014. 384 с.
- Кузнецов Н.Б., Романюк Т.В. Палеозойская эволюция Полярного Урала: Войкарский бассейн с корой океанического типа существовал не менее 65 млн лет // Бюлл. МОИП. Отдел Геол. 2014. № 5. С. 56−70.
- Никишин А.М., Романюк T.В., Московский Д.В., Кузнецов Н.Б., Колесникова A.A., Дубенский А.С., Шешуков В.С., Ляпунов С.М. Верхнетриасовые толщи Горного Крыма: первые результаты U–Pb датирования детритовых цирконов // Вестник МГУ. Серия 4: Геология. 2020. № 2. С. 18–33.
- Пучков В.Н. Геология Урала и Приуралья (актуальные вопросы стратиграфии, тектоники, геодинамики и металлогении). 2010. Уфа: ДизайнПолиграфСервис, 280 с.
- Соболев И.Д., Шадрин А.Н., Расторгуев В.А., Козырева Д.А. Раннеостроводужные гранитоиды Щучьинской зоны Полярного Урала (результаты U–Pb (SIMS) датирования цирконов) // Вестник МГУ. Серия 4: Геология. 2017. № 1. С. 22–32.
- Соболев И.Д., Соболева А.А., Удоратина О.В., Варламов Д.А., Хоуриган Дж.К., Хубанов В.Б., Буянтуев М.Д., Соболева Д.А. Девонский островодужный магматизм Войкарской зоны Полярного Урала // Геотектоника. 2018. № 5. С. 39–74. https://doi.org/10.1134/S0016853X18050065
- Соболев И.Д., Викентьев И.В., Травин А.В., Бортников Н.С. Каменноугольный магматизм Полярного Урала // Доклады РАН. Науки о Земле. 2020. Т. 494. № 2. С. 22–28. https://doi.org/10.31857/S2686739720100096
- Соболева А.А., Карчевский А.Ф., Ефанова Л.И., Кузнецов Н.Б., Гроув М., Соболев И.Д., Маурин М.В. Свидетельства позднерифейского гранитообразования на территории Полярного Урала. // ДАН. 2012. Т. 442. № 4. С. 524–530.
- Травин А.В., Юдин Д.С., Владимиров А.Г., Хромых С.В., Волкова Н.И., Мехоношин А.С., Колотилина Т.Б. Термохронология Чернорудской гранулитовой зоны (Ольхонский регион, Западное Прибайкалье) // Геохимия. 2009. Т. 11. С. 1181–1199.
- Ферштатер Г.Б. Палеозойский интрузивный магматизм Среднего и Южного Урала. 2013. Екатеринбург: РИО УрО РАН, 368 с.
- Glodny J., Pease V., Montero P., Austrheim H., Rusin A.I. Protolith ages of eclogites, Marun-Keu Complex, Polar Urals, Russia: implications for the pre- and early Uralian evolution of the northeastern European continental margin // Geological Society London Memoirs. 2004. 30 (1). P. 87–105. https://doi.org/10.1144/GSL.MEM.2004.030.01.09.
- Hoskin P.W.O., Schaltegger U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis // Reviews in Mineralogy and Geochemistry. 2003. V. 53. № 1. P. 27–62. https://doi.org/10.2113/0530027
- Kuznetsov N.B., Soboleva A.A., Udoratina O.V., Andreichev V.L., Hertseva M.V. Pre-Ordovician Tectonic Evolution and Volcano-Plutonic Associations of the Timanides and Northern Pre-Uralides. Northeast Part of the East Europian Craton // Gondwana Research. 2007. 12 (3). P. 305–323. https://doi.org/10.1016/j.gr.2006.10.021
- Pearce J.A., Harris N.B.W., Tindle A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks // J. of Petrology. 1984. V. 25. № 4. P. 956–983. https://doi.org/10.1093/petrology/25.4.956
- Ridolfi F., Renzulli A., Puerini M. Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes // Contributions to Mineralogy and Petrology. 2010. V. 160. № 1. P. 45–66. https://doi.org/10.1007/s00410-009-0465-7
- Soboleva A.A., Udoratina O.V. Neoproterozoic and early Paleozoic A-type rhyolites and granites in the Subpolar and Polar Urals // International Conference on A-type Granites and Related Rocks through Time (IGCP-510); Helsinki, Finland, August 18–20, 2010. Abstract Volume. P. 101–103.
- Sun S.S., McDonough W.F. Chemical and Isotopic Systematic of Oceanic Basalts: Implications for Mantle Composition and Processes // Geol. Soc. Spec. Publ. London. 1989. V. 42. P. 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19
- Udoratina O.V., Kulikova K.V., Shuyskiy A.S., Soboleva A.A., Andreichev V.L., Golubeva I.I., Kapitanova V.A. Granitoid magmatism in the north of the Urals: U–Pb age, evolution, sources // Geodynamics & Tectonophysics. 2021. 12 (2). P. 287–309. https://doi.org/10.5800/GT-2021-12-2-0525
Supplementary files
