DURABILITY IN WATER OF MATRICES FOR RARE-EARTH – ACTINIDE FRACTION OF HIGH-LEVEL RADIOACTIVE WASTE
- Authors: Melnikova I.M.1,2, Kalenova M.Y.1, Shchepin A.S.1, Yudintsev S.V.1,2
-
Affiliations:
- Leading Research Institute of Chemical Technology JSC
- Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences
- Issue: Vol 508, No 2 (2023)
- Pages: 275-282
- Section: GEOECOLOGY
- Submitted: 30.01.2025
- Published: 01.02.2023
- URL: https://edgccjournal.org/2686-7397/article/view/649735
- DOI: https://doi.org/10.31857/S2686739722601594
- EDN: https://elibrary.ru/SWTVVB
- ID: 649735
Cite item
Abstract
The durability in waters of matrices for rare-earth – actinide fraction HLW has been studied at 25 (1 atm.), 200 or 240°C (pressure of saturated vapor). The samples composed of Nd2ZrTiO7 (cubic pyrochlore-type structure) or Nd4(Ti,Zr)9O24 (orthorhombic symmetry, no natural analogue), phases were obtained by induction melting in a “cold” crucible. Leaching rate of Nd (imitator of REE-MA fraction) on the 28th day of experiment was lower than 5 × 10–8 g/(cm2 day). These results confirmed a very high durability of the ceramic waste forms in hot underground waters.
Keywords
About the authors
I. M. Melnikova
Leading Research Institute of Chemical Technology JSC; Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences
Author for correspondence.
Email: irina.sokolova95@yandex.ru
Russian Federation, Moscow; Russian Federation,
Moscow
M. Yu. Kalenova
Leading Research Institute of Chemical Technology JSC
Email: irina.sokolova95@yandex.ru
Russian Federation, Moscow
A. S. Shchepin
Leading Research Institute of Chemical Technology JSC
Email: irina.sokolova95@yandex.ru
Russian Federation, Moscow
S. V. Yudintsev
Leading Research Institute of Chemical Technology JSC; Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences
Email: irina.sokolova95@yandex.ru
Russian Federation, Moscow; Russian Federation,
Moscow
References
- Hatch L.P. Ultimate disposal of radioactive wastes // Amer. Scientist. 1953. V. 41. P. 410–421.
- Hench L.L., Clark D.E., Cambell J. High level waste immobilization forms // Nucl. Chem. Waste Managem. 1984. V. 5. P. 149–173.
- Radioactive waste forms for the future. Lutz W., Ewing R.C. (eds.). NY: Elsevier, 1988. 778 p.
- Полуэктов П.П., Суханов Л.П., Матюнин Ю.И. Научные подходы и технические решения в области обращения с жидкими высокоактивными отходами // Росс. хим. журнал. 2005. Т. XLIX. № 4. С. 29–41.
- Юдинцев С.В., Никольский М.С., Стефановская О.И., Никонов Б.С. Кристаллохимический фактор выбора матриц РЗЭ–актинидов // Доклады РАН. Науки о Земле. 2022. Т. 504. № 2. С. 89–96.
- Donald I.W. Waste immobilization in glass and ceramic based hosts: radioactive, toxic, and hazardous wastes. Chichester, UK: John Wiley & Sons Ltd., 2010. 507 p.
- Алой А.С., Никандрова М.В. Выщелачивание боросиликатных стекол, содержащих модельные ВАО ОДЦ ГХК, в минерализованной воде гранитоидной формации // Радиохимия. 2015. Т. 57. № 5. С. 466–470.
- Мартынов К.В., Захарова Е.В. Выщелачивание матриц с радиоактивными отходами в условиях захоронения на примере модельного фосфатного стекла // Радиохимия. 2021. Т. 63. № 1. С. 80–92.
- Frolova A.V., Danilov S.S., Vinokurov S.E. Corrosion behavior of some glasses immobilized with REE in simulated mineralized solutions // Ceramics Intern. 2022. V. 48. Iss. 14. P. 19644–19654.
- Ringwood A.E., Kesson S.E., Ware N.G., Hibberson W.O., Major A. The SYNROC process: A geochemical approach to nuclear waste immobilization // Geoch. Journ. 1979. V. 13. P. 141–165.
- Lumpkin G.R. Ceramic host phases for nuclear waste remediation // Experimental and Theoretical Approaches to Actinide Chemistry. J.K. Gibson, W.A. de Jong (eds.). Wiley, 2018. P. 333–376.
- Vernaz É., Bruezière J. History of nuclear waste glass in France // Procedia Materials Science. 2014. V. 7. P. 3–9.
- Yudintsev S.V., Stefanovsky S.V., Kalenova M.Yu., Nikonov B.S., Nikol’skii M.S., Koshcheev A.M., Shchepin A.S. Matrices for immobilization of the rare earth–actinide waste fraction, synthesized by cold crucible induction melting // Radiochemistry. 2015. V. 57. № 3. P. 321–333.
- Amoroso J.W., Marra J., Dandeneau C.S., Brinkman K., Xu Y., Tang M., Maio V., Webb S.M., Chiu W.K.S. Cold crucible induction melter test for crystalline ceramic waste form fabrication: A feasibility assessment // Journal of Nuclear Materials. 2017. V. 486. P. 283–297.
- Митянин А.С., Мусатов Н.Д., Полуэктов П.П., Смелова Т.В., Шестоперов И.Н. Технология кальцинации жидких радиоактивных отходов в роторном кальцинаторе // Экология и промышленность России. 2012. № 3. С. 12–15.
- Shoup S.S., Bamberger C.E., Tyree J.L., Anovitz L. Lanthanide-containing zirconotitanate solid solutions // J. Solid State Chem. 1996. V. 127. P. 231–239.
- Weber W.J. Radiation and thermal ageing of nuclear waste glass // Procedia Materials Science. 2014. V. 7. P. 237–246.
- Yudintsev S.V., Malkovsky V.I., Kalenova M.Yu. The thermal field around a borehole repository of radioactive waste // Doklady Earth Sciences. 2021. V. 498. Pt. 2. P. 525–532.
- Fabian M., Pinakidou F., Tolnai I, Czompoly O., Osan J. Lanthanide (Ce, Nd, Eu) environments and leaching behavior in borosilicate glasses // Scientific Reports. 2021. V. 11. 13272.
- Frankel G.S., Vienna J.D., Lian J., Scully J.R., Gin S., Ryan J.V., Wang J., Kim S.H., Windl W., Du J. A comparative review of the aqueous corrosion of glasses, crystalline ceramics, and metals // Materials Degradation. 2018. V. 2 (15). P. 1–16.
Supplementary files
