PRIMARY PRODUCERS SIZE STRUCTURE IN THE MARGINAL ICE ZONE OF EUROPEAN ARCTIC IN SUMMER

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Primary production (PP) and chlorophyll “a” concentration (chl “a”) estimates in the Eurasian Arctic are discussed, where the continued climatic warming with increased “Atlantification” advance the sea ice losses. The maximum integrated PP and the total chl “a” content observed in the marginal ice zone (MIZ) of the Barents Sea with weakened stratification of the water column and reached 1109 mgC m–2 day–1 and 118 mg m–2. Nearby the ice edge in the Nansen Basin, the main part of PP formed in the upper mixed layer and did not exceed 469 mgC m–2 day–1, the chl “a” content of 56 mg m–2. In the early and late phytoplankton bloom in MIZ, the typical leading role of picophytoplankton in carbon fixation revealed. Large centric diatoms, microphytoplankton, dominated at the peak bloom stage in 2020 with the dense marine ice cover of the Nansen Basin. A similar phenomenon was previously observed only in the Arctic shelf seas and was not recorded in the high-latitude basins of the Arctic Ocean. With the sparse ice cover of the Nansen Basin in 2021, the main primary producers at the peak bloom were pico- and nanophytoplankton. The low variability of assimilation numbers at all bloom stages (1.7 ± 0.3 mgC mg chl “a”–1 h–1) indicates the acclimatization of phytoplankton to changing environment. The ecological flexibility of the primary production are link of the MLZ ecosystems in the studied seas of the European Arctic during the period of climate change is confirmed.

About the authors

Е. A. Kudryavtseva

Shirshov Institute of Oceanology, Russian Academy of Science

Author for correspondence.
Email: kudryavtzeva@rambler.ru
Russian, Moscow

A. A. Klyuvitkin

Shirshov Institute of Oceanology, Russian Academy of Science

Email: kudryavtzeva@rambler.ru
Russian, Moscow

N. V. Politova

Shirshov Institute of Oceanology, Russian Academy of Science

Email: kudryavtzeva@rambler.ru
Russian, Moscow

O. P. Netsvetaeva

Shirshov Institute of Oceanology, Russian Academy of Science

Email: kudryavtzeva@rambler.ru
Russian, Moscow

N. N. Torgunova

Shirshov Institute of Oceanology, Russian Academy of Science

Email: kudryavtzeva@rambler.ru
Russian, Moscow

D. I. Glukhovets

Shirshov Institute of Oceanology, Russian Academy of Science

Email: kudryavtzeva@rambler.ru
Russian, Moscow

V. A. Silkin

Winogradsky Institute of Microbiology, Federal Research Center Fundamentals of Biotechnology
of the Russian Academy of Sciences

Email: kudryavtzeva@rambler.ru
Russian, Moscow

I. I. Rusanov

Winogradsky Institute of Microbiology, Federal Research Center Fundamentals of Biotechnology
of the Russian Academy of Sciences

Email: kudryavtzeva@rambler.ru
Russian, Moscow

L. A. Pautova

Shirshov Institute of Oceanology, Russian Academy of Science

Email: kudryavtzeva@rambler.ru
Russian, Moscow

M. D. Kravchishina

Shirshov Institute of Oceanology, Russian Academy of Science

Email: kudryavtzeva@rambler.ru
Russian, Moscow

A. S. Savvichev

Winogradsky Institute of Microbiology, Federal Research Center Fundamentals of Biotechnology
of the Russian Academy of Sciences

Email: kudryavtzeva@rambler.ru
Russian, Moscow

References

  1. Демидов А.Б., Сергеева В.М., Гагарин В.И. и др. Первичная продукция и хлорофилл размерных групп фитопланктона Карского моря в период схода сезонного льда // Океанология. 2022. Т. 62. № 3. С. 403–415.
  2. Иванов В.В., Репина И.А. Влияние сезонной изменчивости температуры атлантической воды на ледяной покров Северного Ледовитого океана // Известия РАН. Физика атмосферы и океана. 2018. Т. 54. № 1. С. 73–82.
  3. Кравчишина М.Д., Клювиткин А.А., Володин В.Д. и др. Системные исследования осадкообразования в Европейской Арктике в 84-м рейсе научно-исследовательского судна “Академик Мстислав Келдыш” // Океанология. 2022. Т. 62. № 4. С. 660–663.
  4. Паутова Л.А., Силкин В.А., Кравчишина М.Д. и др. Пелагическая экосистема котловины Нансена в условиях изменчивости притока атлантической воды: механизм формирования диатомового цветения в прикромочной зоне // Доклады РАН. Науки о Земле. 2021. Т. 499. № 1. С. 71–76.
  5. Assmy P., Fernández-Méndez M., Duarte P., et al. Leads in Arctic pack ice enable early phytoplankton blooms below snow-covered sea ice // Scientific Reports. 2017. V. 7. 40850. P. 1–9.
  6. Boles E., Provost C., Garçon V., et al. Under-ice phytoplankton blooms in the central Arctic Ocean: insights from the first biogeochemical IAOOS platform drift in 2017 // Journal of Geophysical Research: Oceans. 2020. V. 125. e2019JC015608.
  7. Druzhkova E.I., Ishkulova T.G., Pastukhov I.A. Features of summer ice-edge bloom in the Barents Sea // IOP Conference Series: Earth and Environmental Science. 2020. № 539. Article 012186. P. 1–6.
  8. Falkowski P.G., Laws E.A., Barber R.T., Murray J.W. Phytoplankton and their role in primary, new, and export production. In Ocean biogeochemistry. Springer. 2003. P. 99–121.
  9. Hátún H., Azetsu-Scott K., Somavilla R., et al. The subpolar gyre regulates silicate concentrations in the North Atlantic // Sci. Rep.-UK. 2017. V. 7. 14576.
  10. Hodal H., Kristiansen S. The importance of small-celled phytoplankton in spring blooms at the marginal ice zone in the northern Barents Sea // Deep-Sea Research II. 2008. V. 55. P. 2176–2185.
  11. Holm-Hansen O., Riemann B. Chlorophyll a determination: improvements in methodology // Oikos. 1978. V. 30. P. 438–447.
  12. Iversen K.R., Seuthe L. Seasonal microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria, picoplankton and nanoflagellates // Polar Biology. 2011. V. 34. P. 731–749.
  13. Krause J.W., Duarte D.M., Marquez I.A., et al. Biogenic silica production and diatom dynamics in the Svalbard region during spring // Biogeosciences. 2018. V. 15. P. 6503–6517.
  14. Makarevich P.R., Larionov V.V., Vodopyanova V.V., et al. Phytoplankton of the Barents Sea at the Polar Front in Spring // Oceanology. 2021. V. 61. № 6. P. 930–943.
  15. Morel A., Bricaud A. Theoretical results concerning light-absorption in a discrete medium, and application to specific absorption of phytoplankton // Deep Sea Research I. 1981. V. 28. P. 1375–1393.
  16. Mei Z.P., Legendre L., Gratton Y., et al. Phytoplankton production in the North Water Polynya: size-fractions and carbon fluxes, April–July 1998 // Marine Ecology Progress Series. 2003. V. 256. P. 13–27.
  17. Reynolds C.S. The Ecology of Phytoplankton (Ecology, Biodiversity and Conservation). Cambridge: Cambridge University Press. 2009. 535 p.
  18. Sakshaug E., Skjoldal H.R. Life at the ice edge // Ambio. 1989. V. 18. P. 60–67.
  19. Savvichev A.S., Rusanov I.I., Pimenov N.V., Mitske-vich I.N., Bairamov I.T., Lein A.Yu., Ivanov M.V. Microbiological Explorations in the Northern Part of the Barents Sea in Early Winter // Microbiology. 2000. V. 6. № 6. P. 698–708.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (469KB)

Copyright (c) 2023 Е.А. Кудрявцева, М.Д. Кравчишина, Л.А. Паутова, И.И. Русанов, В.А. Силкин, Д.И. Глуховец, Н.И. Торгунова, О.П. Нецветаева, Н.В. Политова, А.А. Клювиткин, А.С. Саввичев