FORMATION OF TRACHYTES FROM WANGTIAN’E VOLCANIC NECK OF THE CHANGBAISHAN AREA (NORTHEAST CHINA) AS A RESULT OF THOLEIITIC MAGMA CRYSTAL FRACTIONATION
- Authors: Andreeva O.A.1, Andreeva I.A.1, Usoltseva A.I.2, Yarmolyuk V.V.1, Kovalchuk E.V.1, Averin A.A.3, Ji J.4, Zhou X.4
-
Affiliations:
- Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Sciences
- Lomonosov Moscow State University
- Frumkin Institute Of Physical Chemistry And Electrochemistry RAS
- School of Earth and Space Sciences Peking University
- Issue: Vol 513, No 2 (2023)
- Pages: 196-205
- Section: PETROLOGY
- Submitted: 30.01.2025
- Published: 01.12.2023
- URL: https://edgccjournal.org/2686-7397/article/view/649763
- DOI: https://doi.org/10.31857/S2686739723601850
- EDN: https://elibrary.ru/XOLAKF
- ID: 649763
Cite item
Abstract
Tholeiitic basalts and trachytes of Wangtian’e bimodal association are studied. It is shown that trachytes were formed under the leading role of crystal fractionation of the initial tholeiitic magma. Based on the method of melt and fluid inclusion studies, it was determined that hedenbergite phenocrysts from Wangtian’e volcanic neck crystallized in the temperature range of 1080–1100°С, and plagioclase phenocrysts crystallized at temperatures of 1050–1060°С. After thermometric experiments with melt inclusions in plagioclase from trachytes, in some cases relics of carbonates and carbon dioxide were observed in the inclusions. Trachyte phenocrysts contain hydrous Fe-rich silicate globules and CO2 inclusions containing carbonate phases. Fe-rich silicate globules are often intergrown with titanomagnetite and covered with films of amorphous carbon. A model the appearance of hydrous Fe-rich globules and CO2 inclusions with carbonate relics is proposed. It results due to the silicate-silicate and silicate-carbonate liquid immiscibility processes, that are caused by the evolution of the initial basaltic melt. As the trachyte melt has been risen to the surface, the ferrocarbonate liquid decomposed into magnetite, carbon, and carbon dioxide.
About the authors
O. A. Andreeva
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Sciences
Author for correspondence.
Email: oandreeva@igem.ru
Russian, Moscow
I. A. Andreeva
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Sciences
Email: oandreeva@igem.ru
Russian, Moscow
A. I. Usoltseva
Lomonosov Moscow State University
Email: oandreeva@igem.ru
Russian, Moscow
V. V. Yarmolyuk
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Sciences
Email: oandreeva@igem.ru
Russian, Moscow
E. V. Kovalchuk
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry Russian Academy of Sciences
Email: oandreeva@igem.ru
Russian, Moscow
A. A. Averin
Frumkin Institute Of Physical Chemistry And Electrochemistry RAS
Email: oandreeva@igem.ru
Russian, Moscow
J.-Q. Ji
School of Earth and Space Sciences Peking University
Email: oandreeva@igem.ru
China, Beijing
X. Zhou
School of Earth and Space Sciences Peking University
Email: oandreeva@igem.ru
China, Beijing
References
- Muir I.D., Tilley C.E. // American Journ of Science. 1963. V. 261. P. 111–128.
- Рябов В.В. Новосибирск: Наука СО РАН, 1989. 224 с.
- Ярмолюк В.В., Кудряшова Е.А., Козловский А.М. и др. Позднекайнозойская вулканическая провинция Центральной и Восточной Азии // Петрология. 2011. Т. 11. № 4. С. 341–362.
- Macdonald G.A., Katsura T. // J. Petrol. 1964. V. 5. № 1. P. 82–13.
- Chen C.-Y., Frey F.A., Garcia M.O., et al. // Contrib Mineral Petrol. 1991. V. 106. P. 183–200.
- Carmichael I.S.E. // J. Petrol. 1964. V. 5. P. 435–460.
- Fan Q., Liu R., Li D., Li Q. // Chinese Sci. Bull. 1999. V. 44. № 7. P. 660–663.
- Cousens B.L., Clague D.A., Sharp W.D. // Geochemistry, Geophys. Geosystems. 2003. V. 4. № 9. P. 1–27.
- Андреева О.А., Андреева И.А., Ярмолюк В.В. и др. // Петрология. 2020. Т. 28. № 4. С. 393–412.
- Андреева О.А., Ярмолюк В.В., Саватенков В.М. и др. // Докл. РАН. Науки о Земле. 2022. Т. 506. № 1. С. 50–59.
- Перетяжко И.С., Савина Е.А. // ДАН. 2014. Т. 457. № 6. С. 704–709.
- Ghiorso M.S., Carmichael I.S.E. // Rev. Mineral. Geochem. 1987. № 17. P. 467–499.
- Козловский А.М., Ярмолюк В.В., Коваленко В.И. и др. // Петрология. 2007. Т. 15. № 3. С. 257–282.
- Андреева О.А., Ярмолюк В.В., Андрееева И.А. и др. // Петрология. 2018. Т. 26. № 5. С. 535–566.
- Tang H., Kong T., Wu Ch., et al. // Acta Geologica Sinica. 2017. V. 91. № 5. P. 1717–1732.
- Sun S.-S., McDonough W.F. Eds. A.D. Saunders and M.J. Norry. Geol. Soc. London. Spec. Publ. 1989. P. 313–345.
- Frezzotti M.L., Tecce F., Casagli A. // J. of Geochem. Explor. 2012. V. 112. P. 1–20.
- Андреева О.А., Ярмолюк В.В., Андреева И.А. и др. / Материалы XII международной Школы по наукам о Земле им. проф. Л. Л. Перчука (ISES-2022). 2022. С. 13.
- Kang N., Schmidt M.W., Poli S., et al. // Chem. Geol. 2015. V. 400. P. 34–43. https://doi.org/10.1016/j.chemgeo.2015.02.005
- Charlier B., Namur O., Toplis M.J., et al. // Geology. 2011 V. 39 P. 907–910.
Supplementary files
