A LONG-LASTING EVOLUTION OF THE ORE-MAGMATIC SYSTEM AT THE MURUNTAU GOLD DEPOSIT (WESTERN UZBEKISTAN, TIEN SHAN): THE EVIDENCE FROM ISOTOPIC U-PB ZIRCON AGE (LA-ICP-MS METHOD) OF THE GRANITOIDS OF THE SARDARA (SARYKTY) PLUTON

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the first data of the isotopic zircon U–Pb study (LA–ICP–MS method) on the granodiorite-granite from the Sardara (Sarykty) pluton in the district of the giant Muruntau Au deposit in the Western Tien Shan (Uzbekistan). In a single sample, three age groups of zircon crystals identified, with their concordant U–Pb age being 322.0 ± 3.7 Ma (MSWD = 3.1, 4 zircon grains), 301.6 ± 2.1 Ma (MSWD = 0.17, 11 zircon grains), and 289.1 ± 4.9 Ma (MSWD = 0.98, 2 zircon grains), respectively. The scatter of the isotope age data obtained can be interpreted using the model of subsequent crystallization of various zircon generations in variably-deep magmatic batches, followed by zircon capturing during the magma differentiation and crystallization. Notable is a quite close coincidence of the two (the younger) age intervals to the concordant U–Pb zircon ages, which were published before for the granitoid rocks found directly at the Muruntau deposit. The latter thus can represent the dike “splits” occurred at the respective stages of the magma evolution (progressing differentiation) in the deeper batches of the granitoid magma, with its larger intrusions represented by the Sardara (Sarykty) and other plutons outcropping at some distance from the deposit. Overall, the older isotopic U–Pb zircon data of the Sardara (Sarykty) pluton (in the order of 322 Ма and 302 Ма, respectively) correspond closer to the subduction event, whereas the younger U–Pb zircon data (in the order of 289.5 Ma) are quite relevant to the post-collisional stage occurred in the region. Therefore, the initiation and initial development of the magma batches in the Muruntau deposit district could occur in the subduction environment but the final granitoid magma differentiation and crystallization were completed already at the post-collisional stage.

About the authors

S. G. Soloviev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Author for correspondence.
Email: serguei07@mail.ru
Russian, Moscow

S. G. Kryazhev

Central Research Institute of Geological Prospecting for Base and Precious Metals

Email: serguei07@mail.ru
Russian, Moscow

D. V. Semenova

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Email: serguei07@mail.ru
Russian, Novosibirsk

Y. A. Kalinin

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Email: serguei07@mail.ru
Russian, Novosibirsk

N. S. Bortnikov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Email: serguei07@mail.ru
Russian, Moscow

References

  1. Kempe U., Graupner T., Seltmann R., de Boorder H., Dolgopolova A., Zeylmans van Emmichoven M. The Muruntau gold deposit (Uzbekistan): a unique ancient hydrothermal system in the southern Tien Shan // Geoscience Frontiers. 2016. V. 7. P. 495–528.
  2. Савчук Ю.С., Асадуллин Е.Е., Волков А.В., Аристов В.В. Месторождение Мурунтау: геодинамическая позиция и вариант генетической модели рудообразующей системы // Геология рудных месторождений. 2018. Т. 60. С. 365–397.
  3. Seltmann R., Goldfarb R., Zu B., Creaser R.A., Dolgopolova A., Shatov V.V. Muruntau, Uzbekistan: The world’s largest epigenetic gold deposit // SEG Spec. Publ. 2020. V. 23. P. 497–521.
  4. Yakubchuk A., Cole A., Seltmann R., Shatov V. Tectonic setting, characteristics and regional exploration criteria for gold mineralization in central Eurasia: the southern Tien Shan province as a key example / Goldfarb R., Nielsen R. (Eds.), Integrated Methods for Discovery: Global Exploration in 21st Century. Economic Geology Special Publication. 2020. V. 9. P. 177–201.
  5. Dolgopolova A., Seltmann R., Konopelko D., Biske Yu.S., Shatov V., Armstrong R., Belousova E., Pankhurst R., Koneev R., Divaev F. Geodynamic evolution of the western Tien Shan, Uzbekistan: insights from U-Pb SHRIMP geochronology and Sr-Nd-Pb-Hf isotope mapping of granitoids // Gondwana Research. 2017. V. 47. P. 76–109.
  6. Seltmann R., Konopelko D., Biske G., Divaev F., Sergeev S. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt // Journal of Asian Earth Sciences. 2011. V. 42 P. 821–838.
  7. Kempe U., Seltmann R., Graupne T., Rodionov N., Sergeev S.A., Matukov D.I., Kremenetsky A.A. Concordant U-Pb SHRIMP ages of U-rich zircon in granitoids from the Muruntau gold district (Uzbekistan): Timing of intrusion, alteration ages, or meaningless numbers // Ore Geology Reviews. 2015. V. 65. P. 308–326.
  8. Bierlein F.P., Wilde A.R. New constraints on the polychronous nature of the giant Muruntau gold deposit from wall-rock alteration and ore paragenetic studies // Australian Journal of Earth Sciences. 2010. V. 57 (6). P. 839–854.
  9. Kostitsyn Y.A. A Rb-Sr isotope study of the Muruntau deposit: magmatism, metamorphism and mineralization // Geochemistry International. 1996. V. 34. P. 1009–1023.
  10. Griffin W.L., Powell W.J., Pearson N.J., O’Reilly S.Y. GLITTER: Data reduction software for laser ablation ICP-MS / Sylvester, P. (ed.), Miner. Assoc. of Canada, Short Course Series. 2008. V. 40. P. 307–311.
  11. Hiess J., Condon D.J., McLean N., Noble S.R. 238U/235U systematics in terrestrial uranium-bearing minerals. // Science. 2012. V. 335. P. 1610–1614.
  12. Slama J., Kosler J., Condon D.J., et al. Plesovice zircon – a new natural reference material for U-Pb and Hf isotopic microanalysis. // Chemical Geology. 2008. V. 249. № 1–2. P. 1–35.
  13. Ludwig K. User’s Manual for Isoplot 3.00. // Berkeley Geochronology Center, Berkeley, CA. 2003. P. 1–70.
  14. Black L.P., Kamo S.L., Allen C.M., et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards // Chemical Geology. 2004. V. 205. P. 115–140.
  15. Miller J.S., Matzel J.E., Miller C.F., Burgess S.D., Miller R.B. Zircon growth and recycling during the assembly of large, composite arc plutons // J. Volcanol. Geotherm. Res. 2007. V. 167. № 1/4. P. 282–299.
  16. Morelli R., Creaser R.A., Seltmann R., Stuart F.M., Selby D., Graupner T. Age and source constraints for the giant Muruntau gold deposit, Uzbekistan, from coupled Re-Os-He isotopes in arsenopyrite // Geology. 2007. V. 35(9). P. 795–798.
  17. Kempe U., Belyatsky B.V., Krymsky R.S., Kremene-tsky A.A., Ivanov P.A. Sm-Nd and Sr isotope systematics of scheelite from the giant Au(-W) deposit Muruntau (Uzbekistan): Implications for the age and sources of gold mineralization // Mineralium Deposita. 2001. V. 36. P. 379–392.
  18. Канаш А.Д., Головин Е.М., Юрьева Л.А. Каталог геохронологических данных по Тамдытау-Южнонуратинскому региону (K-Ar метод). Ташкент, САИГИМС. 1980. Т. 1.
  19. Wilde A.R., Layer T., Mernagh T., Foster J. The giant Muruntau gold deposit: geologic, geochronologic, and fluid inclusion constrains on ore genesis // Economic Geology. 2001. V. 96. P. 633–644.
  20. Биске Ю.С. Палеозойская структура и история Южного Тянь-Шаня. СПб. Изд-во СПГУ. 1996. 192 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (912KB)
3.

Download (360KB)
4.

Download (1MB)
5.

Download (293KB)
6.

Download (745KB)

Copyright (c) 2023 С.Г. Соловьев, С.Г. Кряжев, Д.В. Семенова, Ю.А. Калинин, Н.С. Бортников