ESTIMATION OF METHANE FLOW FROM THE BOTTOM OF THE KARA SEA

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

During the expedition on the R/V “Akademik Mstislav Keldysh” (81st cruise) in 2020, extensive material was selected, representing columns of bottom sediments up to 6 meters deep in the Kara Sea. After lithological description of the columns, sediment samples were taken from different horizons for degassing of pore gases. The extracted gas samples were analyzed for the content of the main gases – methane (CH4), carbon dioxide (CO2) and light hydrocarbons. The characteristic features of CH4 and CO2 content changes with depth of bottom sediment at station 6879 (Kara Sea shelf) were studied. A model of gas diffusion was constructed taking into account the biochemical reactions of methanogenesis and methane oxidation. The rate of methane formation can be estimated by the value J ≈ 3 × 10–10 μg sec–1 L–1 (per liter of sediment). The rate coefficient of methane consumption by microorganisms is K ≈ 0.5 × 10–10 sec–1. The methane flux from the bottom surface of the Kara Sea near station 6879 is q ≈ 3.47 × 10–2 μL m–1 year–1.

About the authors

S. A. Voropaev

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: voropaev@geokhi.ru
Russian, Moscow

V. S. Sevastyanov

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: voropaev@geokhi.ru
Russian, Moscow

N. V. Dushenko

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: voropaev@geokhi.ru
Russian, Moscow

A. L. Bryukhanov

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences; Lomonosov Moscow State University

Email: voropaev@geokhi.ru
Russian, Moscow; Russian, Moscow

References

  1. Etheridge, D.M., Steele L.P., Francey R.J., Langenfields R.L. Atmospheric methane between 1000 A.D. and present: evidence of anthropogenic emissions and climatic variability // Journal of Geophysical Research. 1998. V. 103. № D13. P. 15979–15993.
  2. Галимов Э.М., Кодина Л.А., Степанец О.В., Коробейник Г.С. Биогеохимия Российской Арктики. Карское море. Результаты исследований по проекту SIRRO 1995–2003 гг. // Геохимия. 2006. № 11. С. 1139–1191.
  3. Вержбицкий В.Е., Косенкова Н.Н., Ананьев В.В., Малышева С.В., Васильев В.Е., Мурзин Р.Р., Комиссаров Д.К., Рослов Ю.В. Геология и углеводородный потенциал Карского моря // Oil & Gas Journal Russia. 2012. № 1–2. С. 48–54.
  4. Богоявленский В.И., Казанин А.Г., Кишанков А.В., Казанин Г.А. Дегазация Земли в Арктике: комплексный анализ факторов мощной эмиссии газа в море Лаптевых // Арктика: экология и экономика. 2021. Т. 11. № 2. С. 178–194.
  5. Севастьянов В.С., Федулова В.Ю., Кузнецова О.В., Наймушин С.Г., Душенко Н.В., Федулов В.С., Кривенко А.П., Малова А.И., Ткаченко Е.А. Особенности распределения СН4 и СО2 в осадках Арктических морей // Геохимия. 2023. Т. 68. № 2. С. 163–172.
  6. Федоров Ю.А., Тамбиева Н.С., Гарькуша Д.Н., Хорошевская В.О. Метан в водных экосистемах. Ростов на Дону: Ростиздат, 2007. 330 с.
  7. Hoehler T.M., Alperin M.J., Albert D.B., Martens C.S. Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium // Global Biogeochemical Cycles. 1994. V. 8. № 4. P. 451–463.
  8. Liu Y., Whitman W.B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea // Annals of the New York Academy of Sciences. 2008. V. 1125. № 1. P. 171–189.
  9. Thauer R.K., Kaster A.K., Seedorf H., Buckel W., Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation // Nature Reviews Microbiology. 2008. V. 6. № 8. P. 579–591.
  10. Liamleam W., Annachhatre A.P. Electron donors for biological sulfate reduction // Biotechnology Advances. 2007. V. 25. № 5. P. 452–463.
  11. Keller M.D., Bellows W.K., Guillard R.R. Dimethylsulfide production in marine phytoplankton. In: Biogenic sulfur in the environment. (Eds. Saltzman E.S., Cooper W.J.). Washington, D.C.: American Chemical Society, 1989. P. 167–182.
  12. Knittel K., Boetius A. Anaerobic oxidation of methane: progress with an unknown process // Annual Review of Microbiology. 2009. V. 63. P. 311–334.
  13. Raghoebarsing A.A., Pol A., van de Pas-Schoonen K.T., Smolders A.J., Ettwig K.F., Rijpstra W.I., Schouten S., Damsté J.S., Op den Camp H.J., Jetten M.S., Strous M. A microbial consortium couples anaerobic methane oxidation to denitrification // Nature. 2006. V. 440. № 7086. P. 918–921.
  14. Li Y.H., Gregory S. Diffusion of ions in seawater and in deep-sea sediments // Geochimica et Cosmochimica Acta. 1974. V. 38. № 5. P. 703–714.
  15. Bernard B.B. Methane in marine sediments // Deep Sea Research Part A: Oceanographic Research Papers. 1979. V. 26. № 4. P. 429–443.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (1MB)
3.

Download (86KB)

Copyright (c) 2023 С.А. Воропаев, В.С. Севастьянов, Н.В. Душенко, А.Л. Брюханов