KAHRAMANMARASH EARTHQUAKES IN TURKEY: SEISMIC MOTION ALONG CONJUGATED FAULTS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Earthquakes in Turkey (Karamanmarash province) in February 2023 do not fit into the usual sequence: the main shock is aftershocks. According to Botha’s statistical law [1], the magnitude of the strongest aftershock is expected to be one less than the magnitude of the main shock. Meanwhile, for the aftershock sequence in Turkey, this difference is only 0.1. In Turkish publications, the first of the strongest earthquakes is called Pazardzhik (Mw = 7.8), and the second – Elbistan (Mw = 7.7) [2, 3]. Each of these earthquakes generated its own system of surface ruptures and aftershock sequences differently oriented in space. The purpose of the study is to assess whether the occurrence of the second earthquake is due to the stress field that existed earlier, or whether it arose as a result of the main shock. If the second scenario is implemented, this means that the stress field can change in the vicinity of a strong earthquake almost instantly (the time difference between earthquakes is less than 9 hours).

About the authors

S. A. Tikhotsky

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Author for correspondence.
Email: direction@ifz.ru
Russian, Moscow

R. E. Tatevosyan

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: direction@ifz.ru
Russian, Moscow

Yu. L. Rebetsky

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: direction@ifz.ru
Russian, Moscow

A. N. Ovsyuchenko

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: direction@ifz.ru
Russian, Moscow

A. S. Larkov

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: direction@ifz.ru
Russian, Moscow

References

  1. Båth M. Lateral inhomogeneities of the upper mantle // Tectonophysics. 1965. 2 (6). P. 483–514.
  2. Özacar A.A., Uzel B., Bozkurt B., Sançar T., Sopacı E., Kaymakçı N., Rojay B., Gülerce Z., Kıncal C., Gregory L. Regional Tectonics and Seismic Source. / Preliminary Reconnaissance Report on February 6, 2023 Kahramanmaraş-Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) Earthquakes. Middle East Technical University, Civil Engineering Department, Ankara, 2023.
  3. Utkusu M., Uzuncha F., Durmuş H., Nalbant S., Sert S. The 2023 Pazarcik (Mw = 7.8) and Elbistan (Mw = 7.6), Kahramaraş earthquakes in the Southeast Turkiye. Sakarya University, Disaster Management Application and Research Center. Sakarya, 22.02.2023.
  4. Бачманов Д.М., Кожурин А.И., Трифонов В.Г. База данных активных разломов Евразии // Геодинамика и тектонофизика. 2017. Т. 8. № 4. С. 711–736.
  5. Global CMT, 2023 (http://www.globalcmt.org), cкaчaн в 2023.
  6. International Seismological Centre (2023), ISC-GEM Earthquake Catalogue.https://doi.org/10.31905/d808b825
  7. Duman T.Y., Emre Ö. The East Anatolian Fault: geometry, segmentation and jog characteristics // Geological Society. London, Special Publications. 2013. V. 372. P. 495–529.
  8. Westaway R. Kinematic consistency between the Dead Sea Fault Zone and the Neogene and Quaternary left-lateral faulting in SE Turkey // Tectonophysics. 2004. V. 391. №. 1–4. P. 203–237.
  9. Трифонов В.Г. Неотектоника подвижных поясов. М.: ГЕОС. 2017. 180 с.
  10. Esat K., Seyitoğlu G. Surface rupture map of the 2023.02.06 Kahramanmaraş Earthquakes based on highresolution satellite and aerial imagery. Report of tectonics Research Group, Dept. of Geological Engineering, Ankara University, 06.03.2023.
  11. Reitman N.G., Briggs R.W., Barnhart W.D., Thompson J.A., DuRoss C.B., Hatem A.E., Gold R.D., Mejstrik J.D., Akçiz S. Preliminary fault rupture mapping of the 2023 M7.8 and M7.5 Türkiye earthquakes. USGS, 28.02.2023. https://doi.org/10.5066/P985I7U2
  12. Ребецкий Ю.Л. Методы реконструкции тектонических напряжений и сейсмотектонических деформаций на основе современной теории пластичности // ДАН. 1999. Т. 365. № 3. С. 392–395.
  13. Ребецкий Ю.Л. Развитие метода катакластического анализа сколов для оценки величин тектонических напряжений // ДАН. 2003. Т. 400. № 3. С. 237–241.
  14. Ребецкий Ю.Л., Кузиков С.И. Тектонофизическое районирование активных разломов Северного Тянь-Шаня // Геология и геофизика. 2016. Т. 57. № 6. С. 1225–1250.
  15. Ребецкий Ю.Л., Guo Y., Wang K., Алексеев Р.С., Маринин А.В. Напряженное состояние земной коры и сейсмотектоника Западного Cычуаня, Китай // Геотектоника. 2021. № 6. С. 75–97.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (2MB)
3.

Download (3MB)
4.

Download (3MB)
5.

Download (1MB)
6.

Download (1MB)

Copyright (c) 2023 С.А. Тихоцкий, Р.Э. Татевосян, Ю.Л. Ребецкий, А.Н. Овсюченко, А.С. Ларьков