Post-Collisional W-Mo-Cu-Au Mineralization in the Middle Tien Shan: First Data on Isotopic U-Pb Dating (LA-ICP-MS Method) of Zircon from Intrusive Rocks of the Kensu Pluton (Eastern Kyrgyzstan)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents first data on isotopic U-Pb study (LA-ICP-MS method) of zircon from intrusive rocks of the Kensu pluton situated in the eastern part of the deep-seated fault system of the “Nikolaev Line”. This pluton of high-potassic (shoshonitic series) rocks is accompanied by the Kensu deposit and other occurrences of skarn and porphyry W-Mo-Cu-Au mineralization. Together with the other Au, W and Cu deposits and occurrences, they are parts of the extended metallogenic belt of Tien Shan. The concordant isotopic U-Pb age data for zircon autocrysts from the rocks of the consecutive intrusive phases span over the interval of approximately 325 to 302 Ma. This interval comprised the crystallization of monzogabbro (321 ± 4 Ma), monzonite (319 ± 4 Ma), camptonite (306 ± 4 Ma), syenite (307 ± 6 Ma), quartz syenite (305.5 ± 2 Ma), and quartz monzonite (305 ± 3 Ma). Zircon antecrysts dated at 316–325 Ma to 335–345 Ma have also been identified. The age data obtained are consistent with the age of subduction processes defined for the western part of the Middle Tien Shan. However, both geochemical characteristics of the rocks from the Kensu pluton and a distinct W-Mo mineralization related to this pluton contradict the subduction-related setting of the pluton emplacement but, instead, point out the post-collisional setting of the intrusion emplacement. This discrepancy can be explained by a “scissor-like” (from east to west) closure of the Turkestan paleoocean that has resulted in the post-collisional regime in the eastern part of the “Nikolaev Line”, whereas subduction continued in its western part. The rocks also contain zircon xenocrysts with a much older age (in to order of 1.9 Gb) that probably represents the age of the Tarim craton basement rocks; this indicates an involvement of the ancient material in the magma generation.

Full Text

Restricted Access

About the authors

S. G. Solovyev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Author for correspondence.
Email: serguei07@mail.ru
Russian Federation, Moscow

S. G. Kryazhev

Central Research Institute of Geological Prospecting for Base and Precious Metals

Email: serguei07@mail.ru
Russian Federation, Moscow

D. V. Semenova

V.S. Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences

Email: serguei07@mail.ru
Russian Federation, Novosibirsk

Yu. A. Kalinin

V.S. Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences

Email: serguei07@mail.ru
Russian Federation, Novosibirsk

N. S. Bortnikov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of the Russian Academy of Sciences

Email: serguei07@mail.ru

Academician of the RAS

Russian Federation, Moscow

References

  1. Kudrin V. S., Soloviev S. G., Stavinsky V. A., Kabardin L. L. The gold-copper-molybdenum-tungsten ore belt of the Tien Shan // Internat. Geol. Rev. 1990. V. 32. P. 930–941.
  2. Yakubchuk A., Cole A., Seltmann R., Shatov V. Tectonic setting, characteristics and regional exploration criteria for gold mineralization in central Eurasia: the southern Tien Shan province as a key example / In: Goldfarb R., Nielsen R. (Eds.), Integrated Methods for Discovery: Global Exploration in Twenty-First Century. Economic Geology Special Publication. 2002. V. 9. P. 77–201.
  3. Seltmann R., Konopelko D., Biske G., Divaev F., Sergeev S. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt // Journal of Asian Earth Sciences. 2011. V. 42. P. 821–838.
  4. Алексеев Д. В., Дегтярев К. Е., Котов А. Б., Сальникова Е. В., Третьяков А. А., Яковлева С. З., Анисимова И. В., Шатагин К. Н. Позднепалеозойские субдукционные и коллизионные магматические комплексы в Нарынском сегменте Срединного Тянь-Шаня (Кыргызстан) // Доклады РАН. Науки о Земле. 2009. Т. 427. № 2. С. 219–223.
  5. Kröner A., Alexeiev D. V., Kovach V. P., Rojas-Agramonte Ya., Tretyakov A. A., Mikolaichuk A. V., Xie H. Q., Sobel E. R. Zircon ages, geochemistry and Nd isotopic systematics for the Palaeoproterozoic 2.3 to 1.8 Ga Kuilyu Complex, East Kyrgyzstan – the oldest continental basement fragment in the Tianshan orogenic belt // Journal of Asian Earth Sciences. 2017. V. 135. P. 122–135.
  6. Soloviev S. G. Geology, mineralization, and fluid inclusion characteristics of the Kensu W-Mo skarn and Mo-W-Cu-Au alkalic porphyry deposit, Tien-Shan, Kyrgyzstan // Economic Geology. 2011. V. 106. P. 193–222.
  7. Соломович Л. И. Герцинский интрузивный магматизм Кыргызстана (геодинамика, петрогенезис и рудоносность) / Автореф. дисс. доктора геол. мин. наук. Бишкек: Институт Геологии Кыргызстана, 1997. 42 с.
  8. Griffin W. L., Powell W. J., Pearson N. J., O’Reilly S. Y. GLITTER: Data reduction software for laser ablation ICP-MS / P. Sylvester (Ed.). Miner. Assoc. of Canada, Short Course Series, 2008. V. 40. P. 307–311.
  9. Hiess J., Condon D. J., McLean N., Noble S. R. 238U/235U systematics in terrestrial uranium-bearing minerals // Science. 2012. V. 335. P. 1610–1614.
  10. Slama J., Kosler J., Condon D. J. et al. Plesovice zircon a new natural reference material for U-Pb and Hf isotopic microanalysis // Chemical Geology. 2008. V. 249. № 1–2. P. 1–35.
  11. Ludwig K. User’s Manual for Isoplot 3.00. Berkeley Geochronology Center, Berkeley, CA. 2003. P. 1–70.
  12. Black L. P., Kamo S. L., Allen C. M. et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards // Chemical Geology. 2004. V. 205. P. 115–140.
  13. Miller J. S., Matzel J. E., Miller C. F., Burgess S. D., Miller R. B. Zircon growth and recycling during the assembly of large, composite arc plutons // J. Volcanol. Geotherm. Res. 2007. V. 167. № 1/4. P. 282–299.
  14. Биске Ю. С. Палеозойская структура и история Южного Тянь-Шаня. СПб.: Изд-во СПГУ, 1996. 192 с.
  15. Charvet J., Shu L., Laurent-Charvet S., Wang B., Faure M., Cluzel D., Chen Y., De Jong K. Palaeozoic tectonic evolution of the Tianshan belt, NW China // Science China, Earth Sciences. 2011. V. 54 (2). P. 166–184.
  16. Biske Y. S., Konopelko D. L., Seltmann R. Paleozoic collisional belt of the South Tien Shan: A review // Earth-Science Reviews. 2023. V. 248. Paper 104637.
  17. Pearce J. A., Peate D. W. Tectonic implications of the composition of volcanic arc magmas // Annual Rev. Earth Planet. Sci. 1995. V. 23. P. 251–285.
  18. Lustrino M., Wilson M. The circum-Mediterranean anorogenic Cenozoic igneous province // Earth-Science Reviews. 2007. V. 81. P. 1–65.
  19. Pirajno F., Zhou T. F. Intracontinental porphyry and porphyry-skarn mineral systems in eastern China: scrutiny of a special case “made-in-China” // Economic Geology. 2015. V. 110. P. 603–639.
  20. Zhou T., Wang S., Fan Y., Yuan F., Zhang D., White N. C. A review of the intracontinental porphyry deposits in the Middle-Lower Yangtze River Valley metallogenic belt, Eastern China // Ore Geology Reviews. 2015. V. 65. P. 433–456.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of the Late Paleozoic metallogenic belt of the Tien Shan. 1 - faults of different orders, 2 - Late Paleozoic active continental margin (Middle Tien Shan), 3 - continental blocks of the Tarim and Karakum cratons basement, 4 - accretionary wedge terranes thrust on the passive continental margin with possible craton basement, 5 - major (a) and minor (b) gold deposits, 6 - gold-copper-molybdenum-tungsten deposits, 7 - molybdenum-tungsten deposits, 8 - polymetal-tungsten deposits, 9 - tin-tungsten deposits, 10 - tin deposits, 11 - major (a) and minor (b) copper-molybdenum and gold-copper porphyry deposits, 12 - state borders

Download (73KB)
3. Fig. 2. Geological schemes of (A) Eastern Kyrgyzstan showing the position of the ‘V.A. Nikolaev line’ and the structure of the adjacent areas, (B) the structure of the Kensui pluton, and (C) the structure of a part of the Kensui pluton. A: 1 - Cenozoic sediments, 2 - Late Devonian-Early Carboniferous sutural troughs (Sonkul, Turuk), 3 - South Tien Shan terranes, 4 - Middle Tien Shan terranes, 5 - North Tien Shan terranes, 6 - Paleoproterozoic (up to Archean? ) gneisses, amphibolites, migmatites (blocks of the Tarim craton basement, separated by rift systems), 7 - Late Carboniferous-Early Permian intrusives of the Shoshonite and high-potassium calcareous-alkaline series, 8 - separate Late Carboniferous-Permian granitoid intrusions of the Southern Tien Shan, 9 - faults, 10-12 - deposits and ore occurrences (10 - gold, 11 - tungsten, 12 - molybdenum). B-B: 1-6 Lower Carboniferous sediments of the Turuk Trough (1 - undissected, 2 - alternation of shales and sandstones, 3 - dolomite and calcite marbles, 4 - quartzites, 5 - quartz-feldspar-biotite hornblende, 6 - thin alternation of skarns, marbles, hornblende and quartzites), 7 - Upper Neoproterozoic-Cambrian shales, sandstones, basic volcanics, dolomites, sandstones, 8-20 - Late Palaeozoic rocks of the Kensui pluton (8 - late dikes of basic rocks, 9 - leucogranites-alaskites, 10 - monzogranites, 11 - quartz monzonites, 12 - quartz syenites, 13 - magmatic breccias with syenite cement, 14 - syenites, 15 - camptonites, 16 - monzonites, 17 - hybrid montsodiorites, 18 - montsodiorites, 19 - ‘essexites’, 20 - ‘shonkinites’), 21 - faults, 22 - zones of carbonate-phyllisite hydrothermal alterations, 23 - skarns, 24 - ore occurrences and mineralisation zones, 25 - rock sampling sites for U-Pb isotopic studies of zircons

Download (85KB)
4. Fig. 3. Cathodoluminescence images of zircon crystals (circles indicate points where isotopic dating was performed, point numbers correspond to those in Table 2) and concordance diagrams for zircons from intrusive rocks of the Kensui pluton (thin solid ellipses are the results of single analyses, dashed ellipse corresponds to the concordance value; errors of single analyses and calculated concordance ages are given at the 2σ level)

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences