Helium Isotope Composition and 4He/20Ne Ratio in Pyrite and Magnetite of Explosive Carbonatite Breccias of the Sallan-Latva Massif, Kola Region

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We studied the isotopic composition and helium and neon ratios of fluid inclusions in magnetite and pyrite from carbonatite breccias of the Sallanlatva alkaline-ultrabasic complex using the stepcrushing method. The results indicate a high probability that fluids from several sources, captured in different proportions, were involved in the formation of the Sallanlatva explosive carbonatite breccias. The R/Ra ratio (R is the measured 3He/4He ratio, and Ra = 1.382 x 10-6 is the same ratio in atmospheric air) reaches a value of 2.3, which is a reliable indicator of mantle gas involvement. The low (1 to 44) value of the 4He/20Ne ratio suggests the contribution of atmospheric gases dissolved in paleometeoric waters. The combination of these two facts supports the hypothesis of the phreatomagmatic nature of the studied breccias, i.e. their formation due to the interaction of infiltrated high-temperature orthomagmatic fluid with meteoric waters transporting dissolved atmospheric gases.

Full Text

Restricted Access

About the authors

E. N. Kozlov

Geological Institute of the Kola Science Centre of the Russian Academy of Sciences

Author for correspondence.
Email: kozlov_e.n@mail.ru
Russian Federation, Apatity

E. N. Fomina

Geological Institute of the Kola Science Centre of the Russian Academy of Sciences

Email: kozlov_e.n@mail.ru
Russian Federation, Apatity

M. Yu. Sidorov

Geological Institute of the Kola Science Centre of the Russian Academy of Sciences

Email: kozlov_e.n@mail.ru
Russian Federation, Apatity

A. V. Gudkov

Geological Institute of the Kola Science Centre of the Russian Academy of Sciences

Email: kozlov_e.n@mail.ru
Russian Federation, Apatity

V. V. Kolobov

Northern Energetics Research Centre of the Kola Science Centre of the Russian Academy of Sciences

Email: kozlov_e.n@mail.ru
Russian Federation, Apatity

References

  1. Ballentine C. J., Burgess R., Marty B. Tracing Fluid Origin, Transport and Interaction in the Crust // Reviews in Mineralogy and Geochemistry. 2002. V. 47. №1. P. 539–614. https://doi.org/10.2138/rmg.2002.47.13
  2. Mamyrin B. A., Tolstikhin I. N. Helium isotopes in nature. Amsterdam, New York: Elsevier, 1984. 288 p.
  3. Tolstikhin I. N., Kamensky I. L., Marty B., Nivin V. A., Vetrin V. R., Balaganskaya E. G., Ikorsky S. V., Gannibal M. A., Weiss D., Verhulst A., Demaiffe D. Rare gas isotopes and parent trace elements in ultrabasic-alkaline-carbonatite complexes, Kola Peninsula: identification of lower mantle plume component // Geochimica et Cosmochimica Acta. 2002. V. 66. № 5. P. 881–901. https://doi.org/10.1016/s0016-7037(01)00807-9
  4. Kramm U., Kogarko L. N., Kononova V. A., Vartiainen H. The Kola Alkaline Province of the CIS and Finland: Precise Rb–Sr ages define 380–360 Ma age range for all magmatism // Lithos. 1993. V. 30. № 1. P. 33–44. https://doi.org/10.1016/0024-4937(93)90004-v
  5. Downes H., Balaganskaya E., Beard A., Liferovich R., Demaiffe D. Petrogenetic processes in the ultramafic, alkaline and carbonatitic magmatism in the Kola Alkaline Province: A review // Lithos. 2005. V. 85. № 1–4. P. 48–75. https://doi.org/10.1016/j.lithos.2005.03.020
  6. Marty B., Tolstikhin I., Kamensky I.L., Nivin V. A., Balaganskaya E., Zimmermann J.-L. Plume-derived rare gases in 380 Ma carbonatites from the Kola region (Russia) and the argon isotopic composition in the deep mantle // Earth and Planetary Science Letters. 1998. V. 164. № 1–2. P. 179–192. https://doi.org/10.1016/s0012-821x(98)00202-7
  7. Буйкин А. И., Верховский А. Б., Сорохтина Н. В., Ко гарко Л. Н. Состав и источники летучих и благородных газов во флюидных включениях в пироксенитах и карбонатитах Себльяврского массива, Кольский полуостров // Петрология. 2014. Т. 22. № 5. С. 546–560. https://doi.org/10.7868/s0869590314050033
  8. Буйкин А. И., Камалеева А. И., Сорохтина Н. В. К вопросу об эффективности разделения захваченных и образованных in situ компонентов благородных газов при дроблении образцов в вакууме // Геохимия. 2018. № 6. С. 586–593. https://doi.org/10.7868/s0016752518060079
  9. Kozlov E., Skiba V., Fomina E., Sidorov M. Noble gas isotopic signatures of sulfides in carbonatites of the Vuoriyarvi alkaline-ultrabasic complex (Kola Region, NW Russia) // Arabian Journal of Geosciences. 2021. V. 14. Art. № 1725. https://doi.org/10.1007/s12517-021-07884-9
  10. Кухаренко A. A., Булах А. Г., Багдасаров Э. А., Римская-Корсакова О. М., Нефедов Е. И., Ильинский Г. А., Сер геев A. C., Абакумова Н. Б. Каледонский комплекс ультраосновных, щелочных пород и карбонатитов Кольского полуострова и Северной Карелии. М.: Недра, 1965. 772 с.
  11. Zaitsev A. N., Sitnikova M. A., Subbotin V. V., Fernández-Suárez J., Jeffries T. E. Sallanlatvi Complex– a rare example of magnesite and siderite carbonatites // Phoscorites and carbonatites from mantle to mine: the key example of the Kola alkaline province. Eds. F. Wall, A.N. Zaitsev. London: Mineralogical Society of Great Britain & Ireland, 2004. P. 201–245. https://doi.org/10.1180/MSS.10.07
  12. Афанасьев Б.В. Минеральные ресурсы щелочноультраосновных массивов Кольского полуострова. СПб.: Изд-во “Роза ветров”, 2011. 224 с.
  13. Walter B. F., Giebel R. J., Siegfried P. R., Gudelius D., Kolb J. The eruption interface between carbonatitic dykes and diatremes – The Gross Brukkaros volcanic field Namibia // Chemical Geology. 2023. V. 621. Art. № 121344. https://doi.org/10.1016/j.chemgeo.2023.121344
  14. Wilske C., Suckow A., Gerber C., Deslandes A., Crane P., Mallants D. Mineral Crushing Methods for Noble Gas Analyses of Fluid Inclusions // Geofluids. 2023. V. 2023. Art. ID 8040253. P. 1–25. https://doi.org/10.1155/2023/8040253
  15. Скиба В. И., Каменский И. Л., Ганнибал М. А., Пахомовский Я. А. Распределение изотопов гелия и аргона в амфиболе из кварц-полевошпатовой жилы контактовой зоны Понойского массива (Кольский полуостров) // Записки РМО. 2018. Т. 147. № 4. С. 96–107.
  16. Defourny A., Blard P.-H., Zimmermann L., Jobé P., Collignon A., Nguyen F., Dassargues A. δ13C, CO2/3He and 3He/4He ratios reveal the presence of mantle gas in the CO2-rich groundwaters of the Ardennes massif (Spa, Belgium) // Hydrology and Earth System Sciences. 2022. V. 26. № 10. P. 2637–2648.
  17. Ozima M., Podosek F. A. Noble Gas Geochemistry (2nd ed.). Cambridge: Cambridge University Press, 2001. 286 p. https://doi.org/10.1017/CBO9780511545986

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. (a) Comparison of the R/Ra ratio in the bulk gas extracted during crushing with the U + 0.24Th content (ppm) determined in the powder remaining after crushing. (b) Histogram showing the relationship between the frequency of occurrence of certain values of R/Ra ratio as a function of 3He content for minerals and bulk samples of carbonatites (coloured areas of bars) and their complementary rocks (empty areas) from the SCP complexes according to data from [3]. Comparison of (c) 3He concentration with 4He/3He isotopic ratio and (d) R/Ra and 4He/20Ne ratios in fluids extracted by stepwise crushing from pyrite and magnetite of explosive carbonatite breccias of the Sallanlatva massif. Notation: 1 - first crushing stage (up to 100 blows), 2 - second crushing stage (from 100 to 200 blows), 3 - third crushing stage (from 200 to 1000 blows), 4 - magnetite (Mag), 5 - pyrite (Py). Figure (c) shows the mixing line, plotted using data from [8], between the substance of the Kola plume [3] and radiogenic helium formed in situ in the mineral. In Figure (d), the colour of the symbols corresponds to the studied sample (red - 186.0 m, blue - 187.6 m, green - 229.5 m), and the arrows reflect the sequence of crushing steps from the first to the third. Figure (d) also shows the mixing lines between air-saturated water, crust, and upper mantle ([1, 16] and references therein), as well as the isotopic characteristics of atmospheric air [17]

Download (71KB)

Copyright (c) 2024 Russian Academy of Sciences