Vesuvianite – a New Mineral for U-Pb Dating of Ore Deposites

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The results of U–Pb (ID-TIMS) geochronological studies of vesuvianite from ore-bearing metasomatites of Khopunvaara (Pitkyaranta ore district, Northern Ladoga region) are presented. The resulting age estimate (1550 ± 6 MA) within the error in agreement with the age of formation of ore-bearing skarns genetically related to the rapakivi granites of the Salma batholith. This indicates the possibility of using vesuvianite as a U–Pb mineral-geochronometer, including for ore-bearing contact-reaction rocks.

全文:

受限制的访问

作者简介

M. Stifeeva

Institute of Precambrian Geology and Geochronology of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: stifeeva.maria@yandex.ru
俄罗斯联邦, Saint Petersburg

Т. Panikorovsky

Kola Science Center of the Russian Academy of Sciences

Email: stifeeva.maria@yandex.ru
俄罗斯联邦, Apatity

A. Larin

Institute of Precambrian Geology and Geochronology of the Russian Academy of Sciences

Email: stifeeva.maria@yandex.ru
俄罗斯联邦, Saint Petersburg

E. Salnikova

Institute of Precambrian Geology and Geochronology of the Russian Academy of Sciences

Email: stifeeva.maria@yandex.ru
俄罗斯联邦, Saint Petersburg

А. Kotov

Institute of Precambrian Geology and Geochronology of the Russian Academy of Sciences

Email: stifeeva.maria@yandex.ru

Corresponding Member of the RAS

俄罗斯联邦, Saint Petersburg

V. Bortnikov

Institute of Precambrian Geology and Geochronology of the Russian Academy of Sciences

Email: stifeeva.maria@yandex.ru
俄罗斯联邦, Saint Petersburg

参考

  1. Rolf L. Romer Vesuvianite – New Tool for the U–Pb Dating of Skarn Ore Deposits // Mineralogy and Petrology. 1992. 46: 331–341.
  2. Qin-Di Wei, Ming Yang, Rolf L. Romer, Hao Wang, Yue-Heng Yang, Zi-Fu Zhao, Shi-Tou Wu, Lie-Wen Xie, Chao Huang, Lei Xu, Jin-Hui Yang, Fu-Yuan Wu. In situ U–Pb geochronology of vesuvianite by LaSF-ICP-MS // Journal of Analytical Atomic Spectrometry. 2022. 37. P. 69–81.
  3. Yu Zhang, Shuling Song, Pete Hollings, Dengfeng Li, Yongjun Shao, Huayong Chen, Lianjie Zhao, Sandra Kamo, Tingting Jin, Lingling Yuan, Qingquan Liu, Schaocong Chen. In-situ U–Pb geochronology of vesuvianite in skarn deposits // Chemical Geology. 2022. 612. 121136.
  4. Langzhang Xing, Jintang Peng, Yuanjun Lv, Yanwen Tang, Jianfeng Gao. Vesuvianite: A potential U–Pb geochronometer for skarn mineralization case study of tunsten and tin deposits in South China // Chemical Geology. 2022. 607. 121017.
  5. Ларин А. М. Граниты рапакиви и ассоциирующие породы. СПб.: Наука, 2011. 402 с.
  6. Agilent Technologies. CrysAlis CCD and CrysAlis RED // Oxford Diffr. Ltd, Yarnton, Oxfordsh. 2014
  7. Sheldrick G. M. Crystal structure refinement with SHELXL // Acta Crystallogr. Sect. C Struct. Chem. 2015. V. 71. № 1. P. 3–8.
  8. Dolomanov O. V., Bourhis L. J., Gildea R. J, Howard J. A. K., Puschmann H. OLEX2: a complete structure solution, refinement and analysis program // J. Appl. Cryst. 2009. 42. 339–341.
  9. Стифеева М. В., Сальникова Е. Б., Арзамасцев А. А., Котов А. Б., Гроздев В. Ю. Кальциевые гранаты как источник информации о возрасте щелочноультраосновных интрузий Кольской магматической провинции // Петрология. 2020. Т. 28. № 1. С. 72–84.
  10. Ludwig K. R. PbDat for MS-DOS, version 1.21 U.S. Geological Survey Open-File Report 88–542. 1991. 35 p.
  11. Ludwig K. R. Isoplot 3.70. A Geochronological Toolkit for Microsoft Excel // Berkeley Geochronology Center Special Publications. 2003. V. 4. 70 p.
  12. Steiger R. H., Jäger E. Subcommission on geochronology: 865 conventions of the use of decay constants in geoand cosmochronology // Earth and Planetary Science Letters. 1977. V. 36. P. 359–362.
  13. Allen F. M., Burnham C. W. A comprehensive structure-model for vesuvianite: symmetry variations and crystal growth // Can. Mineral. 1992. V. 30. P. 1–18.
  14. Паникоровский Т. Л., Яковенчук В. Н., Кри во вичев С. В. Рентгенодифракционный метод оценки температуры кристаллизации везувиана // Записки РМО. 2023. Т. 152. № 2. https://doi.org/10.31857/S0869605523020041
  15. Galuskin E. V., Galuskina I. O., Dzierżanowski P. Chlorine in vesuvianites // Miner. Pol. 2005. 36. 51–61.
  16. Britvin S. N., Antonov A. A., Krivovichev S. V., Arm bruster T., Burns P. C., Chukanov N. V. Fluorvesuvianute, Ca19(Al, Mg, Fe2+)13[SiO4]10[Si2O7]4O(F,OH)9, a new mineral species from Pitkaranta, Karelia, Russia: Description and crystal structure // Can. Mineral. 2003. V. 41. P. 1371–1380.
  17. Amelin Yu., Larin A. U–Pb and Sm-Nd zircon and garnet geochronology of skarn formation associated with rapakivi granite magmatism: an example of the Pitkaranta ore district, south-eastern Karelia / Anorthosites, Rapakivi Granites and Related Rocks. IGCP 290 and 315. Abstr. Montreal. Canada. 1994. P. 1.
  18. Amelin Yu., Larin A. M., Tucker R. D. Chronology of multiphase emplacement of the Salmi rapakivi graniteanorthosite complex, Baltic Shield: implications of magmatic evolution // Contrib. Mineral. Petrol. 1997. 127. P. 353–368.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Geological structure of the Salma batholith and location of deposits of the Pitkäranta ore district. According to [5] with additions and modifications. 1 - platform cover; 2 - yotnium volcanogenic-sedimentary formations (Salma Formation); 3-10 - rocks of the Salma batholith: 3 - topaz-bearing granites (Li-F-granites), 4 - fine-grained porphyritic biotite granites; 5 - coarse-grained biotite granites; 6 - coarse-grained biotite-hornblende granites; 7 - ovoid biotite-hornblende rapakivi granites with fine-grained basic mass; 8 - vyborgites and piterlites; 9 - coarse-grained biotite-hornblende quartz syenites; 10 - basic and medium rocks (anorthosites, norites, ferrodiorites, monzonites); 11-12 - PR1 supracrustal rocks: 11 - Svekofen folded area (Sortavala and Ladoga series); 12 - Karelian craton; 13 - AR2-PR1 gneissogranites of domes; 14-16 - AR2 complexes of the Karelian craton: 14 - granites and migmatite-granites; 15 - greenstone belts; 16 - TTG-association; 17 - deposits and ore occurrences of the Pitkyaranta ore district. Deposits: 1-4 - skarn-propylitic Sn-polymetallic: 1 - Yukan Koski, 2 - Kiteli, 3 - Old ore field, 4 - Heposelka; 5-10 - skarn-greisen-propylitic Sn-We Sn-We-polymetallic: 5 - New ore field, 6 - Hopunvaara, 7 - Lupikko, 8 - South Lupikko, 9 - Ristiniemi, 11 - Uuksa

下载 (160KB)
3. Fig. 2. Geological scheme of the Khopunvaara deposit, Pitkäranta ore district. According to [5] with additions and modifications. 1 - aluminous shales of the Ladoga series; 2 - amphibole shales and amphibolites of the Pitkäranta Formation; 3 - gneissogranites of domes; 4 - ovoid biotite-hornblende granites of Rapakivi of the Salma massif; 5 - Li-F-granites; 6 - ceramic pegmatites; 7-8 - ore-bearing carbonate horizons of the Pitkäranta Formation (7 - upper, 8 - lower); 9 - ore deposits; 10 - faults; 11 - mines; 12 - elements of metamorphic rock occurrence

下载 (44KB)
4. Fig. 3. Crystal structure of vesuvian from metasomatites of Hopunvaara occurrence ores. Projection along the c-axis (a) and along the b-axis. SiO4 tetrahedrons are marked in yellow, Y(3)O6 octahedrons in blue and Y(2)O6 octahedrons in blue, Y(1)O5 pyramids in brown, Ca positions are marked with blue spheres and O positions are marked with red spheres

下载 (60KB)
5. Fig. 4. Fragments of the crystal structure of vesuvian from metasomatites of the Hopunvaara ore occurrence. Sequence of positions Y1-X4, as well as O10 in the channels of the structure (a); local environment of position T1 (b), Location of hydroxyl groups in the structure of vesuvian, in the case of vacancy in position T1 (c)

下载 (33KB)
6. Fig. 5. Concordia diagram for vesuvian from metasomatites of the Hopunvaara ore occurrence. Point numbers correspond to ordinal numbers in Table 1

下载 (21KB)

版权所有 © Russian Academy of Sciences, 2024