On the Nature of Deformations of the Western Slope of Shiveluch Volcano after the Eruption of April 11, 2023, Identified by SAR Interferometry

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on Sentinel-1A satellite images acquired between 01.05 and 22.09.2023, the differential interferometry method (DInSAR) calculated successive displacement fields in time, which clearly show a dome-shaped uplift on the western slope of the Shiveluch volcano, 8–8.5 km west of its active crater. Uplift was especially intense at the satellite acquisition intervals 01.05–13.05.2023, 13.05–25.05.2023 and 25.05–06.06.2023. To test the hypothesis about formation of a displacement area due to magma injection under the western slope of the volcano, numerical modelling was carried out and parameters of magmatic body like a sill were determined, which forms the displacements on the surface that best match the displacement observed from satellite radar interferometry data. It is assumed that after the eruption on 11.04.2023 magma rose from a depth of 20–25 km through a fissure formed under the western slope of the volcano and penetrated horizontally under the slope at a depth of 1–2 km in the north-northwest direction. Within the precision of data on slope displacements, the size of the magma body varies from 6.0 х 3.0 km at 1 km depth, to 5.25 x 1.4 km at 2 km depth, while its height ranges from 0.5 to 1.75 m and its volume from 0.009 to 0.0129 km3. Thus, based on radar interferometry data in combination with the data on the distribution of seismic activity accompanying the magma movement, the model of the magmatic body that penetrated under the western slope of Shiveluch volcano in the postparoxysmal phase of the eruption on 11.04.2023 was constructed. The Formation of a new extrusive dome on the western slope of Shiveluch volcano at the end of April 2024 confirms the hypothesis about injection of magmatic material under the western slope of the volcano and allows to estimate the rate of magma rise to the surface.

Full Text

Restricted Access

About the authors

M. S. Volkova

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Author for correspondence.
Email: msvolkova6177@gmail.com
Russian Federation, Moscow

V. O. Mikhaylov

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: msvolkova6177@gmail.com

Corresponding Member of the RAS

Russian Federation, Moscow

N. V. Gorbach

Institute of Volcanology and Seismology of the Far Eastern Branch of the Russian Academy of Sciences

Email: msvolkova6177@gmail.com
Russian Federation, Petropavlovsk-Kamchatsky

References

  1. Волкова М. С., Михайлов В. О., Османов Р. С., Анализ эффективности применения глобальной погодной модели HRES (GACOS) для коррекции атмосферных помех в интерферометрических оценках полей смещений на примере вулканов Камчатки // Современные проблемы дистанционного зондирования Земли из космоса. 2024. Т. 21. № 2. С. 9–22. https://doi.org/10.21046/2070-7401-2024-21-2-9-22
  2. Волкова М. С., Михайлов В. О., Османов Р. С., Интерпретация полей смещений на склонах вулкана Шивелуч (Камчатка), полученных по спутниковым радарным снимкам с двух орбит // Современные проблемы дистанционного зондирования Земли из зондирования Земли из космоса. 2023. Т. 20. № 5. С. 109–119. https://doi.org/10.21046/2070-7401-2023-20-5-109-119
  3. Гирина О. А., Лупян Е. А., Хорват А., Мельников Д. В., Маневич А. Г., Нуждаев А. А., Бриль А. А., Озеров А. Ю., Крамарева Л. С., Сорокин А. А. Анализ развития пароксизмального извержения вулкана Шивелуч 10–13 апреля 2023 года на основе данных различных спутниковых систем // Современные проблемы дистанционного зондирования Земли из космоса. М.: ИКИ РАН, 2023. Т. 20. № 2. С. 283–291. https://doi.org/10.21046/2070-7401-2023-20-2-283-291
  4. Горбач Н. В., Портнягин М. В. Геологическое строение и петрология лавового комплекса вулкана Молодой Шивелуч // Петрология. 2011. Т. 19. № 2. С. 140–172.
  5. Мелекесцев И. В., Волынец О. Н., Ермаков В. А., Кирсанова Т. П., Масуренков Ю. П. Вулкан Шивелуч / Действующие вулканы Камчатки. В 2-х т. Т. 1. Отв. ред. Федотов С. А., Масуренков Ю. П. М.: Наука, 1991. С. 84–103.
  6. Сенюков С. Л., Нуждина И. Н., Дрознина С. Я., Ко жевникова Т. Ю., Назарова З. А., Соболевская О. В. Предварительные результаты исследований сейсмичности в районе вулкана Шивелуч в 20222023 гг. / Проблемы комплексного геофизического мониторинга сейсмоактивных регионов. Труды Девятой Всероссийской научно-технической конференции с международным участием (24–30 сентября 2023 г.). Петропавловск-Камчатский: КФ ФИЦ ЕГС РАН, 2023. С. 188–192.
  7. Чебров В. Н., Дрознин Д. В., Кугаенко Ю. А., Левина В. И., Сенюков С. Л., Сергеев В. А., Шевченко Ю. В., Ящук В.В. Система детальных сейсмологических наблюдений на Камчатке в 2011 г. // Вулканология и сейсмология, 2013. № 1. C. 18–40. https://doi.org/10.7868/S0203030613010021
  8. Чеброва А. Ю., Чемарёв А. С., Матвеенко Е. А., Чебров Д. В. Единая информационная система сейсмологических данных в камчатском филиале ФИЦ ЕГС РАН: принципы организации, основные элементы, ключевые функции // Геофизические исследования. 2020. Т. 21. № 3. С. 66–91. https://doi.org/10.21455/gr2020.3-5
  9. Bonafede M., Ferrari C. Analytical models of deformation and residual gravity changes due to a Mogi source in a viscoelastic medium // Tectonophysics. 2009. 471(1–2). 4–13.
  10. Goltz A. E., Krawczynsky M. J., Gavrilenko M. G. et. al. Evidence for Superhydrous Primitive Arc Magmas from Mafic Enclaves at Shiveluch Volcano, Kamchatka // Contribution to Mineralogy and Petrology. 2020. V. 175. Art. 115. https://doi.org/10.1007/S00410-020-01746-5
  11. Gorbach N. V., Philosofova T. M, Portnyagin M. V. Amphibole Record Of 1964 Plinian And Following Dome-Forming Eruptions Of Shiveluch Volcano, Kamchatka // Journal Of Volcanology And Geothermal Research. 2020. V. 407. Art. 107108. https://doi.org/10.1016/J.Jvolgeores.2020.107108
  12. Hanssen R. F. Radar Interferometry: Data Interpretation and Error Analysis. Dordrecht: Kluwer Academic Publishers, 2001. 308 p.
  13. Ji L., Lu Z., Dzurisin D., Senyukov S. Pre-eruption deformation caused by dike intrusion beneath Kizimen volcano, Kamchatka, Russia, observed by InSAR // Journal of Volcanology and Geothermal Research. 2013. 256. P. 87–95.
  14. Lundgren P., Kiryukhin A., Milillo P., Samsonov S. Dike model for the 2012–2013 Tolbachik eruption constrained by satellite radar interferometry observations // J. Volcanol. Geotherm. Res. 2015. V. 307. P. 79–88.
  15. Lundgren P., Lu Z. Inflation model of Uzon caldera, Kamchatka, constrained by satellite radar interferometry observations // Geophysical Research Letters. 2006. V. 33. № 6. L06301. https://doi.org/10.1029/2005GL025181
  16. Mogi K. Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them // Bull. Earthquake Res. Inst. 1958. Univ Tokyo. 36:99–134.
  17. McTigue D. F. Elastic stress and deformation near a finite spherical magma body: resolution of the point source paradox // J Geophys Res. 1987. 92:12931–12940.
  18. Ponomareva V., Kyle P., Pevzner M., Sulerzhitsky L., Hartman M. Holocene eruptive history of Shiveluch Volcano, Kamchatka Peninsula, Russia // Geophysical Monograph Series. 2007. 263–282. https://doi.org/10.1029/172gm19
  19. Williams C. A., Wadge G. An accurate and efficient method for including the effects of topography in three-dimensional elastic models of ground deformation with applications to radar interferometry // Journal of Geophysical Research: Solid Earth. 2000. 105(B4). 8103–8120. https://doi.org/10.1029/1999jb900307
  20. Yu C., Li Z., Penna N. T., Crippa P. Generic atmospheric correction model for interferometric synthetic aperture radar observations // J. Geophysical Research: Solid Earth. 2018. V. 123. P. 9202–9222. https://doi.org/10.1029/2017JB015305

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Research area. Shiveluch volcano is marked with a red rectangle on the map of the Kamchatka Peninsula. The inset shows a view of the volcano on Google Maps

Download (29KB)
3. Fig. 2. Total ULOS displacements (m) for the period from 1.05 to 17.08.2023. The black contour shows the area of the most active displacements determined by PCA interferometry. The triangles show the position of the active crater of Shiveluch volcano and extrusions of the Karan group

Download (83KB)
4. Fig. 3. A - distribution of hypocenters by depth and by time from April 1 to August 31, 2023, B - projections of all hypocenters on the horizontal surface, C - projections of hypocenters on the profile L (west - east). The profile length is ~ 15 km, D - distribution of epicentres for April-May 2023, depth < 15 km. Numbers indicate the centre of displacements (1), Karan extrusions (2), volcano crater (3). The straight line is the L profile. The black arrow in Fig. D shows the direction of migration of seismic events in the upper horizon

Download (84KB)
5. Fig. 4. Top - displacements calculated by models M1, M2, M3. Bottom - discrepancy between calculated and observed displacement fields. The rectangular contour is the projection of the intrusion on the horizontal plane

Download (66KB)
6. Fig. 5. A - displacement field from satellite data with intrusion projections in models M1, M2, M3 (red, blue, green colour respectively). B - relief profile along the line A-A1 in Fig. 5A; C, D - comparison of the initial displacement field (grey line) with the calculated displacements according to the models M1, M2, M3 (red, blue and green lines, respectively) along the profiles A-A1 (C) and B-B1 (D) indicated in Fig. 5А

Download (64KB)

Copyright (c) 2024 Russian Academy of Sciences