On the Nature of Deformations of the Western Slope of Shiveluch Volcano after the Eruption of April 11, 2023, Identified by SAR Interferometry
- Authors: Volkova M.S.1, Mikhaylov V.O.1, Gorbach N.V.2
-
Affiliations:
- Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
- Institute of Volcanology and Seismology of the Far Eastern Branch of the Russian Academy of Sciences
- Issue: Vol 518, No 2 (2024)
- Pages: 318-328
- Section: GEOPHYSICS
- Submitted: 31.01.2025
- Published: 15.12.2024
- URL: https://edgccjournal.org/2686-7397/article/view/649911
- DOI: https://doi.org/10.31857/S2686739724100135
- ID: 649911
Cite item
Abstract
Based on Sentinel-1A satellite images acquired between 01.05 and 22.09.2023, the differential interferometry method (DInSAR) calculated successive displacement fields in time, which clearly show a dome-shaped uplift on the western slope of the Shiveluch volcano, 8–8.5 km west of its active crater. Uplift was especially intense at the satellite acquisition intervals 01.05–13.05.2023, 13.05–25.05.2023 and 25.05–06.06.2023. To test the hypothesis about formation of a displacement area due to magma injection under the western slope of the volcano, numerical modelling was carried out and parameters of magmatic body like a sill were determined, which forms the displacements on the surface that best match the displacement observed from satellite radar interferometry data. It is assumed that after the eruption on 11.04.2023 magma rose from a depth of 20–25 km through a fissure formed under the western slope of the volcano and penetrated horizontally under the slope at a depth of 1–2 km in the north-northwest direction. Within the precision of data on slope displacements, the size of the magma body varies from 6.0 х 3.0 km at 1 km depth, to 5.25 x 1.4 km at 2 km depth, while its height ranges from 0.5 to 1.75 m and its volume from 0.009 to 0.0129 km3. Thus, based on radar interferometry data in combination with the data on the distribution of seismic activity accompanying the magma movement, the model of the magmatic body that penetrated under the western slope of Shiveluch volcano in the postparoxysmal phase of the eruption on 11.04.2023 was constructed. The Formation of a new extrusive dome on the western slope of Shiveluch volcano at the end of April 2024 confirms the hypothesis about injection of magmatic material under the western slope of the volcano and allows to estimate the rate of magma rise to the surface.
Full Text

About the authors
M. S. Volkova
Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Author for correspondence.
Email: msvolkova6177@gmail.com
Russian Federation, Moscow
V. O. Mikhaylov
Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Email: msvolkova6177@gmail.com
Corresponding Member of the RAS
Russian Federation, MoscowN. V. Gorbach
Institute of Volcanology and Seismology of the Far Eastern Branch of the Russian Academy of Sciences
Email: msvolkova6177@gmail.com
Russian Federation, Petropavlovsk-Kamchatsky
References
- Волкова М. С., Михайлов В. О., Османов Р. С., Анализ эффективности применения глобальной погодной модели HRES (GACOS) для коррекции атмосферных помех в интерферометрических оценках полей смещений на примере вулканов Камчатки // Современные проблемы дистанционного зондирования Земли из космоса. 2024. Т. 21. № 2. С. 9–22. https://doi.org/10.21046/2070-7401-2024-21-2-9-22
- Волкова М. С., Михайлов В. О., Османов Р. С., Интерпретация полей смещений на склонах вулкана Шивелуч (Камчатка), полученных по спутниковым радарным снимкам с двух орбит // Современные проблемы дистанционного зондирования Земли из зондирования Земли из космоса. 2023. Т. 20. № 5. С. 109–119. https://doi.org/10.21046/2070-7401-2023-20-5-109-119
- Гирина О. А., Лупян Е. А., Хорват А., Мельников Д. В., Маневич А. Г., Нуждаев А. А., Бриль А. А., Озеров А. Ю., Крамарева Л. С., Сорокин А. А. Анализ развития пароксизмального извержения вулкана Шивелуч 10–13 апреля 2023 года на основе данных различных спутниковых систем // Современные проблемы дистанционного зондирования Земли из космоса. М.: ИКИ РАН, 2023. Т. 20. № 2. С. 283–291. https://doi.org/10.21046/2070-7401-2023-20-2-283-291
- Горбач Н. В., Портнягин М. В. Геологическое строение и петрология лавового комплекса вулкана Молодой Шивелуч // Петрология. 2011. Т. 19. № 2. С. 140–172.
- Мелекесцев И. В., Волынец О. Н., Ермаков В. А., Кирсанова Т. П., Масуренков Ю. П. Вулкан Шивелуч / Действующие вулканы Камчатки. В 2-х т. Т. 1. Отв. ред. Федотов С. А., Масуренков Ю. П. М.: Наука, 1991. С. 84–103.
- Сенюков С. Л., Нуждина И. Н., Дрознина С. Я., Ко жевникова Т. Ю., Назарова З. А., Соболевская О. В. Предварительные результаты исследований сейсмичности в районе вулкана Шивелуч в 20222023 гг. / Проблемы комплексного геофизического мониторинга сейсмоактивных регионов. Труды Девятой Всероссийской научно-технической конференции с международным участием (24–30 сентября 2023 г.). Петропавловск-Камчатский: КФ ФИЦ ЕГС РАН, 2023. С. 188–192.
- Чебров В. Н., Дрознин Д. В., Кугаенко Ю. А., Левина В. И., Сенюков С. Л., Сергеев В. А., Шевченко Ю. В., Ящук В.В. Система детальных сейсмологических наблюдений на Камчатке в 2011 г. // Вулканология и сейсмология, 2013. № 1. C. 18–40. https://doi.org/10.7868/S0203030613010021
- Чеброва А. Ю., Чемарёв А. С., Матвеенко Е. А., Чебров Д. В. Единая информационная система сейсмологических данных в камчатском филиале ФИЦ ЕГС РАН: принципы организации, основные элементы, ключевые функции // Геофизические исследования. 2020. Т. 21. № 3. С. 66–91. https://doi.org/10.21455/gr2020.3-5
- Bonafede M., Ferrari C. Analytical models of deformation and residual gravity changes due to a Mogi source in a viscoelastic medium // Tectonophysics. 2009. 471(1–2). 4–13.
- Goltz A. E., Krawczynsky M. J., Gavrilenko M. G. et. al. Evidence for Superhydrous Primitive Arc Magmas from Mafic Enclaves at Shiveluch Volcano, Kamchatka // Contribution to Mineralogy and Petrology. 2020. V. 175. Art. 115. https://doi.org/10.1007/S00410-020-01746-5
- Gorbach N. V., Philosofova T. M, Portnyagin M. V. Amphibole Record Of 1964 Plinian And Following Dome-Forming Eruptions Of Shiveluch Volcano, Kamchatka // Journal Of Volcanology And Geothermal Research. 2020. V. 407. Art. 107108. https://doi.org/10.1016/J.Jvolgeores.2020.107108
- Hanssen R. F. Radar Interferometry: Data Interpretation and Error Analysis. Dordrecht: Kluwer Academic Publishers, 2001. 308 p.
- Ji L., Lu Z., Dzurisin D., Senyukov S. Pre-eruption deformation caused by dike intrusion beneath Kizimen volcano, Kamchatka, Russia, observed by InSAR // Journal of Volcanology and Geothermal Research. 2013. 256. P. 87–95.
- Lundgren P., Kiryukhin A., Milillo P., Samsonov S. Dike model for the 2012–2013 Tolbachik eruption constrained by satellite radar interferometry observations // J. Volcanol. Geotherm. Res. 2015. V. 307. P. 79–88.
- Lundgren P., Lu Z. Inflation model of Uzon caldera, Kamchatka, constrained by satellite radar interferometry observations // Geophysical Research Letters. 2006. V. 33. № 6. L06301. https://doi.org/10.1029/2005GL025181
- Mogi K. Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them // Bull. Earthquake Res. Inst. 1958. Univ Tokyo. 36:99–134.
- McTigue D. F. Elastic stress and deformation near a finite spherical magma body: resolution of the point source paradox // J Geophys Res. 1987. 92:12931–12940.
- Ponomareva V., Kyle P., Pevzner M., Sulerzhitsky L., Hartman M. Holocene eruptive history of Shiveluch Volcano, Kamchatka Peninsula, Russia // Geophysical Monograph Series. 2007. 263–282. https://doi.org/10.1029/172gm19
- Williams C. A., Wadge G. An accurate and efficient method for including the effects of topography in three-dimensional elastic models of ground deformation with applications to radar interferometry // Journal of Geophysical Research: Solid Earth. 2000. 105(B4). 8103–8120. https://doi.org/10.1029/1999jb900307
- Yu C., Li Z., Penna N. T., Crippa P. Generic atmospheric correction model for interferometric synthetic aperture radar observations // J. Geophysical Research: Solid Earth. 2018. V. 123. P. 9202–9222. https://doi.org/10.1029/2017JB015305
Supplementary files
