Post-collisional molybdenum-porphyry mineralization in the middle Tien Shan: first isotopic U-Pb zircon data for rocks from the productive molo-sarychat pluton (Eastern Kyrgyzstan)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the first isotopic U-Pb study data (LA-ICP-MS method) of zircon from intrusive rocks of the Molo-Sarychat pluton situated along the deep-seated fault system of the “Nikolaev Line” in the eastern Kyrgyzstan. The intrusive rocks from this pluton belong to the high-potassic calc-alkaline to shoshonitic series. Intense Mo(-W-Cu-Au) (mainly molybdenum-porphyry) mineralization is spatially and genetically associated with this pluton. Together with the other Au, W and Cu deposits and occurrences, this mineralization is part of the extended metallogenic belt of Tien Shan; however, occurrences of molybdenum-porphyry mineralization are still rare in this belt. The concordant isotopic U-Pb ages of zircon autocrysts indicate the crystallization of quartz monzonite (293.3±4.2 Ma) and monzogranite (286.6±2.4 Ma) in the Early Permian. Zircon antecrysts dated at 306-320 Ma are also present. The crystallization age obtained corresponds to a post-collisional epoch of the development of this territory but the presence of the antecrysts expands the pluton emplacement to the Late Carboniferous-Early Permian, which, as a result, spanned over initially subduction-related and then post-collisional tectonic settings. Correspondingly, a post-collisional setting of the Mo(-W-Cu-Au) (molybdenum-porphyry) mineralization is established; it is related to the pluton studied and was formed after the emplacement of quartz monzonite (early stage) and monzogranite (late stage). Significant enrichment in Mo can be related to its progressing accumulation during magmatic differentiation causing the emplacement of quartz monzonite and especially monzogranite. These processes occurred under the more mature post-collisional tectonic regime, with possible formation of intermediate magma chambers in the Paleoproterozoic metamorphic rocks and ancient granitoids. The age dates determined for rocks from the Molo-Sarychat pluton are similar to those identified for the igneous and metasomatic rocks of the large Kumtor gold deposit that is also associated with the “Nikolaev Line”.

About the authors

S. G. Soloviev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Author for correspondence.
Email: serguei07@mail.ru
Russian Federation, Moscow

S. G. Kryazhev

Central Research Institute of Geological Prospecting for Base and Precious Metals

Email: serguei07@mail.ru
Russian Federation, Moscow

D. V. Semenova

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Email: serguei07@mail.ru
Russian Federation, Novosibirsk

Y. A. Kalinin

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Email: serguei07@mail.ru
Russian Federation, Novosibirsk

N. S. Bortnikov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Email: serguei07@mail.ru

Academician of the RAS

Russian Federation, Moscow

References

  1. Kudrin V. S., Soloviev S. G., Stavinsky V. A., Kabardin L. L. The gold-copper-molybdenum-tungsten ore belt of the Tien Shan // Internat. Geol. Rev. 1990. V. 32. P. 930–941.
  2. Yakubchuk A., Cole A., Seltmann R., Shatov V. Tectonic setting, characteristics and regional exploration criteria for gold mineralization in central Eurasia: the southern Tien Shan province as a key example / In: Goldfarb R., Nielsen R. (Eds.). Integrated Methods for Discovery: Global Exploration in Twenty-First Century. Economic Geology Special Publication. 2002. V. 9. P. 77–201.
  3. Seltmann R., Konopelko D., Biske G., Divaev F., Sergeev S. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt // Journal of Asian Earth Sciences. 2011. V. 42. P. 821–838.
  4. Kröner A., Alexeiev D. V., Kovach V. P., Rojas-Agramonte Ya., Tretyakov A. A., Mikolaichuk A. V., Xie H. Q., Sobel E.R. Zircon ages, geochemistry and Nd isotopic systematics for the Palaeoproterozoic 2.3 to 1.8 Ga Kuilyu Complex, East Kyrgyzstan – the oldest continental basement fragment in the Tianshan orogenic belt // Journal of Asian Earth Sciences. 2017. V. 135. P. 122–135.
  5. Верхоланцев В. Н., Саргаев В. Н., Нурмагамбетов Х. Поиски и предварительная оценка молибденового оруденения в Моло-Сарычатском рудном поле / Отчет Геологической службы Киргизской ССР. Иныльчек, 1983. 238 с.
  6. Griffin W. L., Powell W. J., Pearson N. J., O’Reilly S. Y. GLITTER: Data reduction software for laser ablation ICP-MS // Sylvester P. (Ed.). Miner. Assoc. of Canada, Short Course Series, 2008. V. 40. P. 307–311.
  7. Hiess J., Condon D. J., McLean N., Noble S. R. 238U/235U systematics in terrestrial uranium-bearing minerals // Science. 2012. V. 335. P. 1610–1614.
  8. Slama J., Kosler J., Condon D. J. et al. Plesovice zircon - a new natural reference material for U-Pb and Hf isotopic microanalysis // Chemical Geology. 2008. V. 249. № 1–2. P. 1–35.
  9. Ludwig K. User’s Manual for Isoplot 3.00. Berkeley, CA: Berkeley Geochronology Center. 2003. P. 1–70.
  10. Black L. P., Kamo S. L., Allen C. M. et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards // Chemical Geology. 2004. V. 205. P. 115–140.
  11. Miller J. S., Matzel J. E., Miller C. F., Burgess S. D., Miller R. B. Zircon growth and recycling during the assembly of large, composite arc plutons // J. Volcanol. Geotherm. Res. 2007. V. 167. № 1/4. P. 282–299.
  12. Биске Ю. С. Палеозойская структура и история Южного Тянь-Шаня. СПб.: Изд-во СПГУ, 1996. 192 с.
  13. Konopelko D., Biske G., Seltmann R., Eklund O., Belyatsky B. Hercynian post-collisional A-type granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan // Lithos. 2007. V. 97. P. 140–160.
  14. Соловьев С. Г. Металлогения шошонитового магматизма. М: Научный мир, 2014. Т. 1. 528 c. Т. 2. 472 с.
  15. Audétat A. Source and evolution of molybdenum in the porphyry Mo(–Nb) deposit at Cave Peak, Texas // Journal of Petrology. 2010. V. 51(8). P. 1739–1760.
  16. Pettke T., Oberli F., Heinrich C. A. The magma and metal source of giant porphyry-type ore deposits, based on lead isotope microanalysis of individual fluid inclusions // Earth and Planetary Science Letters. 2010. V. 296(3–4). P. 267–277.
  17. Greaney A. T., Rudnick R. L., Gasching R. M., Whalen J. B., Luais B., Clemens J. D. Geochemistry of molybdenum in the continental crust // Geochim. Cosmochim. Acta. 2018. V. 238. P. 36–54.
  18. Blevin P. L., Chappell B. W. The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia // Trans. Royal Soc. Edinburgh. 1996. V. 83. P. 305–316.
  19. Mao J., Konopelko D., Seltman R., Lehmann B., Chen W., Wang Y., Eklund O., Usubaliev T. Postcollisional age of the Kumtor gold deposit and timing of Hercynian events in the Tien Shan, Kyrgyzstan // Econ. Geology. 2004. V. 99. P. 1771–1780.
  20. Ивлева Е. А., Пак Н. Т., Асилбеков К. А., Скрзипек Э., Хаузенбергер К., Орозбаев Р. Т. Золотое оруденение в связи с пермским магматизмом восточной части Южного и Срединного Тянь-Шаня (Кыргызстан) // Вестник КРСУ. 2022. Т. 22. № 4. С. 180–191.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences