Isotope (δ18О, δ13С, δD) characteristics of biotite-carbonate-quartz associations of hydrothermal veins in metabasites of North Karelia
- Authors: Volkov I.S.1, Dubinina E.O.1, Kossova S.A.1, Chizhova Y.N.1, Larionova Y.O.1, Kozlovskii V.M.1, Pertsev A.N.1
-
Affiliations:
- Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
- Issue: Vol 518, No 1 (2024)
- Pages: 67-75
- Section: GEOCHEMISTRY
- Submitted: 31.01.2025
- Published: 29.11.2024
- URL: https://edgccjournal.org/2686-7397/article/view/649925
- DOI: https://doi.org/10.31857/S2686739724090077
- ID: 649925
Cite item
Abstract
On the White sea islands and coast of North Karelia, in the Loukhi region, carbonate-silicate and quartz veins are widespread, confined to bodies of Early Proterozoic metabasites and their contacts with host gneisses. The isotopic characteristics of coarsely crystalline vein carbonates (δ18O and δ13C), as well as associated quartz (δ18O) and biotite (δ18O and δD), were studied. The isotopic composition of oxygen suggests biotite-quartz-carbonate equilibria during the formation of veins at temperatures of 520–450°C. The O and H isotopic characteristics of biotite correspond to the equilibrium of the fluid with metamorphic rocks. At the same time, the isotopic compositions of O and C carbonates indicate different sources of CO2 in fluids. There are three groups of carbonates according to δ18О and δ13С. The first group has “magmatic” isotopic characteristics of the CO2 source (δ18ОVSMOW = 7.1… 12.1‰; δ13СVPDB= = –6.3…–4.5‰). Carbonates of the second group have high δ18О and δ13С, characteristic of Precambrian sedimentary carbonates (δ18ОVSMOW = 21.9…24.7‰; δ13СVPDB = –2.2…-2‰), similar to those described earlier in the neighboring Engozero sector of the Belomorian mobile belt. In the third group, the δ13С values are similar to the carbonates of the first group, and δ18О – to the second group (δ13СVPDB= = –1.7…0.9‰, δ18ОVSMOW = 6…12‰). The O and C isotopic compositions of carbonates of the third group can be obtained from the action of a putative magmatic fluid on both the primary sedimentary source of metamorphic fluids and redeposited vein carbonates.
About the authors
I. S. Volkov
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
Author for correspondence.
Email: ivanvolkov19@yandex.ru
Russian Federation, Moscow
E. O. Dubinina
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
Email: ivanvolkov19@yandex.ru
Corresponding Member of the RAS
Russian Federation, MoscowS. A. Kossova
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
Email: ivanvolkov19@yandex.ru
Russian Federation, Moscow
Y. N. Chizhova
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
Email: ivanvolkov19@yandex.ru
Russian Federation, Moscow
Y. O. Larionova
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
Email: ivanvolkov19@yandex.ru
Russian Federation, Moscow
V. M. Kozlovskii
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
Email: ivanvolkov19@yandex.ru
Russian Federation, Moscow
A. N. Pertsev
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences
Email: ivanvolkov19@yandex.ru
Russian Federation, Moscow
References
- Аранович Л. Я., Бортников Н. С., Бушмин С. А., Викентьева О. В., Дубинина Е. О., Козловский В. М., Лебедева Ю. М. Флюидные потоки в региональных зонах деформаций // Петрология. 2009. Т. 17. № 4. С. 415–436.
- Волков И. С., Прокофьев В. Ю., Козловский В. М., Перцев А.Н. Сульфидная минерализация карбонатно-силикатных жил в раннепротерозойских метабазитах Северной Карелии: минеральные ассоциации, формы проявления серебра, флюидные включения // Геология рудных месторождений. 2023. Т. 65. № 6. С. 551–578.
- Волков. И. С., Козловский В. М. Стадийность и условия формирования карбонатно-силикатных жил и околожильных ореолов в раннепротерозойских комплексах Беломорского подвижного пояса, Северная Карелия // Петрология. 2023. Т. 31. № 5. С. 531–551.
- Глебовицкий В. А. Ранний докембрий Балтийского щита. СПб.: Наука, 2005. 711 с.
- Козловский В. М., Травин В. В., Саватенков В. М., Терентьева Л. Б., Сальникова, Е. Б., Курдюков Е. Б. Термобарометрия палеопротерозойских метаморфических событий центральной части Беломорского подвижного пояса, Северная Карелия // Петрология. 2020. Т. 28. № 2. С. 184–209.
- Слабунов А. И. Геология и геодинамика архейских подвижный поясов на примере Беломорской провинции Фенноскандинавского щита // Институт геологии КарНЦ РАН. Петрозаводск: Карельский научный центр РАН, 2008. 296 с.
- Слабунов А. И., Лохов К. И., Богомолов Е. С., Прилепский Э. Б., Сибелев О. С., Пресняков С. И., Сергеев С. А., Ронькин Ю. Л. Палеопротерозойские мантийные карбонатиты о. Мраморный (Беломорская провинция Балтийского щита) / Матер. IV Рос. конф. по изотопной геохронологии Изотопные системы и время геологических процессов. 2009. Т. 1. С. 173–176.
- Baumgartner L. P., Valley J. W. Stable isotope transport and contact metamorphic fluid flow // Reviews in Mineralogy and Geochemistry. 2001. V. 43. № 1. P. 415–467.
- Bons P. D., Elburg M. A., Gomez-Rivas E. A review of the formation of tectonic veins and their microstructures // J. Structur. Geol. 2012. V. 43. P. 33–62.
- Bulakh A. G., Ivanikov V. V., Orlova M. P. Overview of carbonatite-phoscorite complexes of the Kola alkaline province in the context of a Scandinavian North Atlantic alkaline province. In’ Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province. The Mineralogical Society Series. Vol. 10. London: Mineralogical Society, 2004. P. 1–43.
- Kyser T. K. Stable Isotopes in High Temperature Geological Processes / In: Valley J.W., Taylor H.P., O’Niel J. R. (Eds.). Chelsea, MI: Book Crafters, MI, 1986. P. 141–164.
- Lokhov K. I., Sibelev О. S., Slabunov А. I, Bogomolov E. S., Prilepsky E. B. Endogenous and sedimentary carbonate rocks from the Belomorian province: new geochemical, isotopic and geochronological data // Geochemistry of Alkaline rocks: mater. scientific conf. Moscow: GEOKHI RAS, 2009. P. 93–94.
- Petschnig P., Schmidt M. W., Kueter N., Sartori G., Bernasconi S. M. An almost universal CO2-CO32– carbon isotope fractionation function for high temperatures // Earth and Planetary Science Letters. 2024. V. 627. P. 118552.
- Scheele N., Hoefs J. Carbon isotope fractionation between calcite, graphite and CO2: an experimental study // Contributions to Mineralogy and Petrology. 1992. V. 112. № 1. P. 35–45.
- Sheppard S. M. F. Characterization and isotopic variations in natural waters // Reviews in mineralogy. 1986. V. 16. P. 165–184.
- Sheppard S. M. F., Schwarcz H. P. Fractionation of carbon and oxygen isotopes and magnesium between coexisting metamorphic calcite and dolomite //Contributions to Mineralogy and Petrology. 1970. V. 26. P. 161–198.
- Shields G., Veizer J. Precambrian Marine Carbonate Isotope Database: Version 1.1 // Geochem. Geophys. Geosys. (G3). 2002. V. 3. P. U1–U12.
- Suzuoki T., Epstein S. Hydrogen isotope fractionation between OH-bearing minerals and water //Geochimica et Cosmochimica Acta. 1976. V. 40. №. 10. P. 1229–1240.
- Vho A., Lanari P., Rubatto D. An internally-consistent database for oxygen isotope fractionation between minerals // Journal of Petrology. 2019. V. 60. № 11. P. 2101–2129.
- Yardley B. W. D., Bodnar R. J. Fluids in the continental crust // Geochemical perspectives. 2014. V. 3. № 1. P. 1–2.
Supplementary files
