Composition of secondary melt inclusions within magnesiochromite of mantle lherzolite xenolith from V. GRIB kimberlite (East European craton) as an indicator of low H2O content in the kimberlite melt
- Authors: Tarasov A.A.1, Golovin A.V.1, Agasheva E.V.1, Pokhilenko N.P.1
-
Affiliations:
- Sobolev Institute of Geology and Mineralogy, Siberian Branch Russian Academy of Science
- Issue: Vol 518, No 1 (2024)
- Pages: 76-84
- Section: PETROLOGY
- Submitted: 31.01.2025
- Published: 29.11.2024
- URL: https://edgccjournal.org/2686-7397/article/view/649926
- DOI: https://doi.org/10.31857/S2686739724090082
- ID: 649926
Cite item
Abstract
This paper describes secondary crystallized melt inclusions entrapped in magnesiochromite of lherzolite xenolith from the V. Grib kimberlite pipe (Arkhangelsk diamondiferous province). The inclusions represent snapshots of the melt, associated with magmatic processes that subsequently formed the V. Grib kimberlite pipe. Various Na-K-Ca-, Na-Mg-, Ca-Mg-, Mg-, Ca-carbonates, Na–Mg-carbonates with additional anions PO43-–, Cl–, SO42–, chlorides, sulphate, phosphate and silicate were identified among the daughter phases. The mineral assemblage of daughter phases, carbonate (77 vol. %) and silicate (15 vol. %) content and Ca : Na : K ratios within the inclusions show that inclusions’ parental melt was an alkali-rich carbonate liquid with low amounts of SiO2 (≤6 wt%) and H2O (≤0.6 wt%). Serpentine is known to be the main water-rich mineral in kimberlites, however the water sources during serpentinization of kimberlites and the H2O content in kimberlite melts remains controversial issue. The absence of serpentine and low water content in the studied melt inclusions in comparison with those in the kimberlites of the V. Grib pipe (10–14 wt. %) indicate predominance of external fluids in the serpentinization of these kimberlites.
About the authors
A. A. Tarasov
Sobolev Institute of Geology and Mineralogy, Siberian Branch Russian Academy of Science
Author for correspondence.
Email: tarasov.alexey@igm.nsc.ru
Russian Federation, Novosibirsk
A. V. Golovin
Sobolev Institute of Geology and Mineralogy, Siberian Branch Russian Academy of Science
Email: tarasov.alexey@igm.nsc.ru
Russian Federation, Novosibirsk
E. V. Agasheva
Sobolev Institute of Geology and Mineralogy, Siberian Branch Russian Academy of Science
Email: tarasov.alexey@igm.nsc.ru
Russian Federation, Novosibirsk
N. P. Pokhilenko
Sobolev Institute of Geology and Mineralogy, Siberian Branch Russian Academy of Science
Email: tarasov.alexey@igm.nsc.ru
Academician of the RAS
Russian Federation, NovosibirskReferences
- Головин А. В., Каменецкий В. С. Составы кимберлитовых расплавов: обзор исследований расплавных включений в минералах кимберлитов // Петрология. 2023. Т. 31. № 2. С. 115–152.
- Giuliani A., Schmidt M. W., Torsvik T. H., Fedortchouk Y. Genesis and evolution of kimberlites // Nature Reviews Earth & Environment. 2023. № 4. P. 738–753.
- Kamenetsky V. S., Golovin A. V., Maas R., Giuliani A., Kamenetsky M. B., Weiss Y. Towards a new model for kimberlite petrogenesis: Evidence from unaltered kimberlites and mantle minerals // Earth-Science Reviews. 2014. V. 139. P. 145–167.
- Mitchell R. H. Petrology of hypabyssal kimberlites: Relevance to primary magma compositions // Journal of Volcanology and Geothermal Research. 2008. V. 174. № 1. P. 1–8.
- Kopylova M. G., Matveev S., Raudsepp M. Searching for parental kimberlite melt // Geochimica et Cosmochimica Acta. 2007. V. 71. № 14. P. 3616–3629.
- Golovin A. V., Sharygin I. S., Kamenetsky V. S., Korsakov A.V., Yaxley G.M. Alkali-carbonate melts from the base of cratonic lithospheric mantle: Links to kimberlites // Chemical Geology. 2018. V. 483. P. 261–274.
- Golovin A. V., Tarasov A. A., Agasheva E. V. Mineral Assemblage of Olivine-Hosted Melt Inclusions in a Mantle Xenolith from the V. Grib Kimberlite Pipe: Direct Evidence for the Presence of an Alkali-Rich Carbonate Melt in the Mantle Beneath the Baltic Super-Craton // Minerals. 2023. V. 13. № 5. P. 645.
- Sharygin I. S., Golovin A. V., Tarasov A. A., Dymshits A. M., Kovaleva E. Confocal Raman spectroscopic study of melt inclusions in olivine of mantle xenoliths from the Bultfontein kimberlite pipe (Kimberley cluster, South Africa): Evidence for alkali-rich carbonate melt in the mantle beneath Kaapvaal Craton // Journal of Raman Spectroscopy. 2022. V. 53. № 3. P. 508–524.
- Sharygin I. S., Golovin A. V., Dymshits A. M., Kalugina A. D., Solovev K. A., Malkovets V. G., Pokhilenko N. P. Relics of Deep Alkali–Carbonate Melt in the Mantle Xenolith from the Komsomolskaya–Magnitnaya Kimberlite Pipe (Upper Muna Field, Yakutia) // Doklady Earth Sciences. 2021. V. 500. № 2. P. 842–847.
- Stripp G. R., Field M., Schumacher J. C., Sparks R. S. J., Cressey G. Post-emplacement serpentinization and related hydrothermal metamorphism in a kimberlite from Venetia, South Africa // Journal of Metamorphic Geology. 2006. V. 24. № 6. P. 515–534.
- Afanasyev A. A., Melnik O., Porritt L., Schumacher J. C., Sparks R. S. J. Hydrothermal alteration of kimberlite by convective flows of external water // Contributions to Mineralogy and Petrology. 2014. V. 168. № 1. P. 1038.
- Golovin A. V., Sharygin I. S., Korsakov A. V., Kamenetsky V. S., Abersteiner A. Can primitive kimberlite melts be alkali-carbonate liquids: Composition of the melt snapshots preserved in deepest mantle xenoliths // Journal of Raman Spectroscopy. 2020. V. 51. № 9. P. 1849–1867.
- Sparks R. S. J. Kimberlite Volcanism // Annual Review of Earth and Planetary Sciences. 2013. V. 41. № 1. P. 497–528.
- Barnes S. J., Roeder P. L. The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks // Journal of Petrology. 2001. V. 42. № 12. P. 2279–2302.
- Ganguly J. Diffusion kinetics in minerals: Principles and applications to tectono-metamorphic processes // Energy Modelling in Minerals. 2002. № 4. P. 271–309.
- Korsakov A., Golovin A., Sharygin I. Raman Spectroscopic Study of Micas from Ultra-Fresh Udachnay-East Kimberlites Chemical Geology. 2014. V. 1783. P. 5035.
- Roeder P. L., Schulze D. J. Crystallization of Groundmass Spinel in Kimberlite // Journal of Petrology 2008. V. 49. № 8. P. 1473–1495.
- Brett R. C., Russell J. K., Andrews G. D. M., Jones T. J. The ascent of kimberlite: Insights from olivine // Earth and Planetary Science Letters. 2015. V. 424. № 15. P. 119–131.
- Kononova V. A., Golubeva Y. Y., Bogatikov O. A., Kargin A. V. Diamond resource potential of kimberlites from the Zimny Bereg field, Arkhangel’sk oblast // Geology of Ore Deposits. 2007. V. 49. № 6. P. 421–441.
- Sharygin I. S., Litasov K. D., Shatskiy A.мF., Golovin A. V., Ohtani E., Pokhilenko N.P. Melting phase relations of the Udachnaya-East Group-I kimberlite at 3.0–6.5 GPa: Experimental evidence for alkali-carbonatite composition of primary kimberlite melts and implications for mantle plumes // Gondwana Research. 2015. V. 28. № 4. P. 1391–1414.
Supplementary files
