Pacific waters in the East Siberian Sea: identification by δ13С(DIC) and [DIC]

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The estimates of the scale and distribution of Bering Sea waters in the Pacific sector of the Arctic Ocean were made using the high-precision data on the isotopic composition and concentration of dissolved inorganic carbon. Despite the fact that δ13С(DIC) and [DIC] are not classic conservative tracers, in the East Siberian Sea, which is a zone of active interaction of river runoff with sea waters, these parameters can indicate the presence of sea waters not only of Atlantic, but also of Pacific origin, similar to the waters of the Bering Sea. Using a three-component mixing model, the spatial distribution of Pacific, Atlantic and river waters along two sections of the East Siberian Sea was estimated. The Pacific component extends from east to west to approximately 160 degrees east longitude, and possibly further west, skirting Wrangel Island not only from the north, but also possibly from the south. In the East Siberian Sea, waters similar to the open sea Bering summer surface waters are found, which are carried to the northern shelf by the circular Bering Sea Current, and upper intermediate waters, which can enter the zone of the northern shelf of the sea due to upwelling or active mixing.

About the authors

E. O. Dubinina

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Author for correspondence.
Email: elenadelta@gmail.com

Corresponding Member of the RAS

Russian Federation, Moscow

S. A. Kossova

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Email: elenadelta@gmail.com
Russian Federation, Moscow

A. A. Osadchiev

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences; Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: elenadelta@gmail.com
Russian Federation, Moscow; Moscow

Yu. N. Chizhova

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Email: elenadelta@gmail.com
Russian Federation, Moscow

A. S. Avdeenko

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Email: elenadelta@gmail.com
Russian Federation, Moscow

References

  1. Aksenov Y., Karcher M., Proshutinsky A., Gerdes R., de Cuevas B., Golubeva E., Kauker F., Nguyen A. T., Platov G. A., Wadley M., Watanabe E., Coward A.C. Arctic pathways of Pacific Water: Arctic Ocean Model Intercomparison experiments // J. Geophys. Res. Oceans. 2016. V. 121. P. 27–59. doi: 10.1002/2015JC011299.
  2. Anderson L. G., Olsson K., and Chierici M. A carbon budget for the Arctic Ocean // Global Biogeochem. Cycles. 1998. V. 12. Is. 3. P. 455–465.
  3. Bauch D., Polyak L., Ortiz J. D. A baseline for the vertical distribution of the stable carbon isotopes of dissolved inorganic carbon (δ13CDIC) in the Arctic Ocean // Arktos. 2015. V. 1. P. 15. doi.org/10.1007/s41063-015-0001-0
  4. Bostock H. C., Opdyke B. N., Williams M. J. M. Characterizing the intermediate depth waters of the Pacific Ocean using δ13C and other geochemical tracers // Deep Sea Research Part I: Oceanographic Research Papers. 2010. V. 57. Is. 7. P. 847–859. doi: 10.1016/j.dsr.2010.04.005
  5. Chu G., Luo X., Zheng Z., Zhao W., Wei H. Causes of increased dissolved inorganic carbon in the subsurface layers in the western shelfbreak and high latitudes basin in the Arctic Pacific sector // Environmental Research Letters. 2021. V. 16. P. 104008. doi.org/10.1088/1748-9326/ac2408
  6. Ge T., Luo C., Ren P., Zhang H., Fan Di, Chen H., Chen Z., Zhang J., Wang X. Stable carbon isotopes of dissolved inorganic carbon in the Western North Pacific Ocean: Proxy for water mixing and dynamics// Front. Mar. Sci. 2022. 9:998437. doi: 10.3389/fmars.2022.998437
  7. Kinney J.C., Assmann K.M., Maslowski W., Björk G., Jakobsson M., Jutterström S., Lee Y. J., Osinski R., Semiletov I., Ulfsbo A., Wåhlström I., Anderson L. G. On the circulation, water mass distribution, and nutrient concentrations of the western Chukchi Sea, Ocean Sci., 18, 29–49 https://doi.org/10.5194/os-18-29-2022, 2022
  8. Kroopnick, P. M. The distribution of13C of ΣCO2 in the world oceans // Deep-Sea Res. 1985. V. 32. P. 57–84.
  9. Miura T., Suga T., Hanawa K. Winter Mixed Layer and Formation of Dichothermal Water in the Bering Sea // Journal of Oceanography. 2002. V. 58. P. 815–823.
  10. Mizuta G., Ohshimab K. I., Fukamachib Y., Itoha M., Wakatsuchib M. Winter mixed layer and its yearly variability under sea ice in the southwestern part of the Sea of Okhotsk // Continental Shelf Research. 2004. V. 24. P. 643–657.
  11. Nishioka J., Obata H., Hirawake T., Kondo Y., Yamashita Y., Misumi K., Yasuda I. A review: iron and nutrient supply in the subarctic Pacific and its impact on phytoplankton production // J. Oceanography. 2021. V. 77. P. 561–587. doi.org/10.1007/s10872-021-00606-5
  12. Nomura D., Kawaguchi Y., Webb A. et al, Li Y., Schmidt K., Droste E. S., Chamberlain E. J. et al. Meltwater layer dynamics of a central Arctic lead: Effects of lead width variation and re-freezing and mixing events during late summer // Elem. Sci. Anth. 2023. V. 11. https://doi.org/10.1525/elementa.2022.00102.
  13. Osadchiev A. A., Frey D. I., Spivak E. A., Shchuka S. A., Tilinina N. D., Semiletov I. P. Structure and inter-annual variability of the freshened surface layer in the Laptev and East-Siberian seas during ice-free periods. Frontiers in Marine Science. 2021. Vol. 8. 735011. doi: 10.3389/fmars.2021.735011
  14. Rudels B., Carmack E. Arctic Ocean Water Mass Structure and Circulation // Oceanography. 2022. V. 35. No. 3–4. P. 52–65. doi.org/10.5670/oceanog.2022.116
  15. Taylor J. R., Falkner K. K., Schauer U., Meredith M. Quantitative considerations of dissolved barium as a tracer in the Arctic Ocean // J. Geophys. Res. 2003. V. 108. Is. C12. doi: 10.1029/2002JC001635
  16. Tazoe H., Obata H., Hara T., Inoue M., Tanaka T., Nishioka J. Vertical Profiles of 226Ra and 228Ra Activity Concentrations in the Western Subarctic Gyre of the Pacific Ocean // Front. Mar. Sci. 2022. V. 9. P. 824862. doi: 10.3389/fmars.2022.824862
  17. Wang X., Zhao J., Lobanov V.B., Kaplunenko D., Rudykh Y.N., He Y., Chen X. Distribution and transport of water masses in the East Siberian Sea and their impacts on the Arctic halocline. Journal of Geophysical Research: Oceans, 126, e2020JC016523. https://doi.org/10.1029/2020JC016523
  18. Woodgate R. (2013) Arctic Ocean Circulation: Going Around At the Top Of the World. Nature Education Knowledge 4(8):8
  19. Yamamoto M., Tanaka N., Tsunogai S. Okhotsk Sea intermediate water formation deduced from oxygen isotope systematics // J. Geophys. Res. 2001. V. 106. P. 31075–31084.
  20. Zhang Y., Zhang Y.Y., Xu D.Y., Chen C.S., Shen X.Y., Hu S., Chang L., Zhou X.Q., Feng G.P. Impacts of atmospheric and oceanic factors on monthly and interannual variations of polynya in the East Siberian Sea and Chukchi Sea. Advances in Climate Change Research, 12(4), 527–538.
  21. Дубинина Е. О., Коссова С. А., Мирошников А. Ю., Авдеенко А. С., Чижова Ю. Н. Растворенный неорганический углерод ([DIC], δ13С(DIC)) в водах восточной части Восточно-Сибирского моря // Геохимия. 2020. Т. 65 № 8. С. 731–751. doi: 10.31857/S0016752520080051
  22. Дубинина Е. О., Коссова С. А., Чижова Ю. Н., Авдеенко А. С. Растворенный неорганический углерод (δ13С(DIC), [DIC]) в водах западной части Берингова моря. 2024, Океанология, в печати

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences