Division of the Early Proteozoic Khargituy Formation of the Sarma Group (Akitkan orogenic belt, Siberian craton) into different age sequences based on the results of U–Pb isotopic analysis of zircon

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

U–Pb (LA-ICP-MS) geochronological studies of detrital zircon from rocks of the Early Proterozoic Khargituy Formation of the Sarma Group, distributed in the central part of the Baikal uplift of the basement of the Siberian craton and included in the structure of the Sarma zone of the Akitkan orogenic belt, were carried out. It was established that the Khargituy Formation included rocks formed at different time intervals: <2.7, 2.15–1.95 and <1.7 Ga. It is shown that Meso- and Neoarchean age peaks (2.7–3.1 Ga) are characteristic of zircon from leucocratic gneisses, which indicates the formation of gneiss protoliths after 2.7 Ga due to the destruction of Archean granitoids of the Sarma zone of the Akitkan orogenic belt and igneous rocks of the Anabar superterrane basement of the Siberian craton. The time interval of 2.15–1.95 Ga corresponds to the accumulation of protoliths of mica-quartz schists, which is justified by the age of the youngest zircon grains – 2150 Ma and the age of metamorphism of these rocks – 1.95 Ga. The presence of an age peak at 1833 Ma and younger zircon grains with ages in the range of 1675–1785 Ma in a sample of mica-quartz schist taken from another area of rock outcrops attributed to the Khargituy Formation indicates that the accumulation of protoliths of these rocks occurred after the formation of the Akitkan orogenic belt and the South Siberian postcollisional magmatic belt. The results obtained indicate that the rocks attributed to the Khargituy Formation of the Sarma Group of the Western Baikal region cannot be considered as a single stratounit, since their formation occurred at different stages of the evolution of the Akitkan orogenic belt. Thus, as a result of the research, it was shown that, based on new data, the deposits of the Khargituy Formation should be divided into complexes of different ages (stratounits), each of which corresponds to a certain stage of the geological evolution of the territory.

Full Text

Restricted Access

About the authors

U. S. Efremova

Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: uefremova@crust.irk.ru
Russian Federation, Irkutsk

T. V. Donskaya

Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences

Email: uefremova@crust.irk.ru
Russian Federation, Irkutsk

D. P. Gladkochub

Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences

Email: uefremova@crust.irk.ru

Corresponding Member of the RAS

Russian Federation, Irkutsk

A. M. Mazukabzov

Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences

Email: uefremova@crust.irk.ru
Russian Federation, Irkutsk

A. V. Ivanov

Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences

Email: uefremova@crust.irk.ru
Russian Federation, Irkutsk

N. V. Bryansky

Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences

Email: uefremova@crust.irk.ru
Russian Federation, Irkutsk

References

  1. Розен О. М. Сибирский кратон: тектоническое районирование, этапы эволюции // Геотектоника. 2003. № 3. С. 3–21.
  2. Gladkochub D., Pisarevsky S., Donskaya T., Natapov L., Mazukabzov A., Stanevich A., Sklyarov E. Siberian Craton and its evolution in terms of Rodinia hypothesis. // Episodes. 2006. V. 29. № 3. P. 169–174.
  3. Donskaya T. V. Assembly of the Siberian Craton: Constraints from Paleoproterozoic granitoids // Precambrian Research. 2020. V. 348. № 1. 105869.
  4. Савельева В. Б., Данилова Ю. В., Шумилова Т. Г., Иванов А. В., Данилов Б. С., Базарова Е. П. Эпигенетическая графитизация в фундаменте Сибирского кратона – свидетельство миграции обогащенных углеводородами флюидов в палеопротерозое // ДАН. 2019. Т. 486, № 2. С. 217–222.
  5. Donskaya T. V., Gladkochub D. P. Post-collisional magmatism of 1.88–1.84 Ga in the southern Siberian Craton: An overview // Precambrian Research. 2021. V. 367. № 3. 106447.
  6. Donskaya T. V., Gladkochub D. P., Pisarevsky S. A., Poller U., Mazukabzov A. M., Bayanova T. B. Discovery of Archaean crust within the Akitkan orogenic belt of the Siberian craton: New insight into its architecture and history // Precambrian Research. 2009. V. 170. P. 61–72.
  7. Галимова Т. Ф., Пермяков С. А., Бобровский В. Т., Пашкова А. Г. и др. Государственная геологическая карта Российской федерации. Масштаб 1:1 000 000 (третье поколение). Лист N-48-Иркутск. Объяснительная записка. 2009. 490 с.
  8. Бибикова Е. В., Кориковский С. П., Кирнозова Т. И., Сумин Л. В., Аракелянц М. М., Федоровский В. С., Петрова З. И. Определение возраста пород Байкало-Витимского зеленокаменного пояса изотопно-геохронологическими методами // Изотопное датирование процессов метаморфизма и метасоматоза / Ред. Ю. А. Шуколюков. М.: Наука, 1987. С. 154–164.
  9. Донская Т. В., Бибикова Е. В., Мазукабзов А. М., Козаков И. К., Гладкочуб Д. П., Кирнозова Т. И., Плоткина Ю. В., Резницкий Л. З. Приморский комплекс гранитоидов Западного Прибайкалья: геохронология, геодинамическая типизация // Геология и геофизика. 2003. Т. 44. № 10. С. 1006–1016.
  10. Мац В. Д., Аносов В. С., Дунская Н. К. Геологическая карта СССР масштаба 1:200 000, лист N-48-XXIV. Объяснительная записка. 1961. 79 с.
  11. Ефремова У. С., Донская Т. В., Гладкочуб Д. П., Мазукабзов А. М., Иванов А. В., Брянский Н. В. Раннепротерозойские отложения иликтинской свиты как индикаторы эволюции Акитканского орогенного пояса (юг Сибирского кратона) // Геология и Геофизика. 2024. Т. 65. (в печати).
  12. Wiedenbeck M., Allé P., Corfu F., Griffin W. L., Meier M., Oberli F., von Quadt, A., Roddick J. C., Spiegel W. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses // Geostandard Newsletter. 1995. V. 19. № 1. P. 1–23.
  13. Sláma J., Košler J., Condon D. J., Crowley J. L., Gerdes A., Hanchar J. M., Horstwood M. S. A., Morris G. A., Nasdala L., Norberg N., Schaltegger U., Schoene B., Tubrett M. N., Whitehouse M. J. Plešovice zircon – A new natural reference material for U–Pb and Hf isotopic microanalysis // Chem. Geol. 2008. V. 249. P. 1–35.
  14. Black L. P., Kamo S. L., Allen C. M., Davis D. W., Aleinikoff J. N., Valley J. W., Mundil R., Campbell I. H., Korsch R. J., Williams I. S., Foudoulis C. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards // Chemical Geology. 2004. V. 205. № 1–2. P. 115–140.
  15. Paton C., Hellstrom J., Paul B., Woodhead J., Hergt J. Iolite: Freeware for the visualisation and processing of mass spectrometric data // Journal of Analytical Atomic Spectrometry. 2011. V. 26. P. 2508–2518.
  16. Powerman V. I., Buyantuev M. D., Ivanov A. V. A review of detrital zircon data treatment, and launch of a new tool “Dezirteer” along with the suggested universal workflow // Chem. Geol. 2021. V. 583(S02). 120437.
  17. Ludwig K. R. User’s manual for Isoplot 3.75. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center. Sp. Publ., 2012. № 5. 75 p.
  18. Ларичев А. И., Видик С. В., Сергеев С. А., Осадчий И. В. Петрографическая характеристика и возраст пород Алдано-Анабарского блока фундамента Сибирской платформы по данным изучения керна глубоких скважин // Региональная геология и металлогения. 2022. № 92. С. 28–40.
  19. Донская Т. В., Гладкочуб Д. П., Мазукабзов А. М., Лепехина Е. Н. Возраст и источники палеопротерозойских дометаморфических гранитоидов Голоустенского блока Сибирского кратона: геодинамические следствия // Петрология. 2016. Т. 24. № 6. С. 587–606.
  20. Гладкочуб Д. П., Донская Т. В., Эрнст Р. Е., Седерлунд У., Мазукабзов А. М., Шохонова М. Н. Расширение ареала Тимптонской крупной магматической провинции (~1.75 млрд лет) Сибирского кратона // Геодинамика и тектонофизика. 2019. Т. 10. № 4. С. 829–839.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Tectonic scheme of the Siberian Craton [3] (a), scheme of the geological structure of the Akitkan orogenic belt (b) and scheme of the geological structure of the study area (c) (modified after [5, 10]). (a): 1 - Archean terranes; 2 - Paleoproterozoic terranes; 3 - Archean suture zones; 4-6 - orogenic belts and collision zones with age: 4 - 1.95-2.00 billion years, 5 - 1.90-1.95 billion years, 6 - 1.87-1.90 billion years; 7 - basement outcrops; 8 - contours of regional tectonic zones united in the Akitkan orogenic belt: G - Goloustno, S - Sarminskaya, Ch - Chuya, T - Tonodskaya. (b) 1 - Central Asian folded belt; 2-11 - Siberian craton: 2 - Phanerozoic sedimentary cover; 3 - Vendian - Riphean sedimentary strata; 4-5 - Early Proterozoic (1.84-1.88 Ga) rocks of the South Siberian post-collisional igneous belt: 4 - granitoids, 5 - volcanogenic-sedimentary rocks; 6 - Early Proterozoic (1.90-2.02 Ga) granitoids; 7 - metamorphic rocks of the Goloustena zone; 8 - metamorphic rocks of the Sarma zone; 9 - Archean granitoids of the Sarma zone; 10 - metamorphic rocks of the Chuya zone, 11 - metamorphic rocks of the Tonod zone. (c) 1 - Quaternary deposits; 2 - Uluntui suite; 3 - Goloustena suite; 4 – granitoids of the Primorsky complex; 5 – granitoids of the Kocherikov complex; 6 – gabbro-dolerites of the Kocherikov complex; 7 – Ilikta suite; 8–10 – Khargitui suite: 8 – upper subsuite (quartzites, quartz-micaceous schists), 9 – middle subsuite (schists, micaceous quartzites and metarhyolites), 10 – lower subsuite (biotite, hornblende-biotite, two-mica gneisses and metarhyolites); 11 – faults; 12 – sampling points and their numbers.

Download (382KB)
3. Fig. 2. Concordia diagrams (left) and histograms and relative probability curves (right) of U‒Pb age of detrital zircon from rocks of the Khargitui suite: (a) sample 2109, (b) sample 2115, (c) sample 2155.

Download (298KB)
4. Supplement 1
Download (70KB)

Copyright (c) 2024 Russian Academy of Sciences