Recent data on the isotopes and geochemistry of kimberlites of the TSNIGRI-Arkhangelskaya pipe, Arkhangelsk diamondiferous province (Northern East-European platform)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The first data on the bulk and isotopic (Sr, Nd) composition of kimberlites from the low-diamondiferous TSNIGRI-Arkhangelskaya pipe, located in the Kepino field of the Arkhangelsk diamondiferous province, are presented. It is shown that the kimberlites belong to the moderate titanium type of kimberlites of the province and differ significantly from the previously studied kimberlites of the Kepino field in lower concentrations of TiO2, Ba, high field strength and light rare earth elements. Among all the kimberlites of the province, the kimberlites of the TSNIGRI-Arkhangelskaya pipe have the most radiogenic Sr composition (87Sr/86Sr t from 0.7068 to 0.7089), which may be due to a combination of several factors. It has been established that the kimberlites of the pipe are represented by two varieties, which have differences both in the concentrations of major and trace elements, and in the compositions of Sr and Nd isotopes. The composition of Nd isotopes (εNd from 0 to –0.6) for variety I kimberlites indicates their enriched source in the lithospheric mantle. Kimberlites of variety II have a less radiogenic Nd composition (εNd from –3.5 to –4.9), the interpretation of which is ambiguous: their formation from an even more ancient enriched source inside the lithospheric mantle compared to variety I cannot be excluded.

Full Text

Restricted Access

About the authors

E. V. Agasheva

V. S. Sobolev Institute of Geology and Mineralogy Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: shchukinalena@igm.nsc.ru
Russian Federation, Novosibirsk

L. V. Zyryanova

V. S. Sobolev Institute of Geology and Mineralogy Siberian Branch of the Russian Academy of Sciences

Email: shchukinalena@igm.nsc.ru
Russian Federation, Novosibirsk

A. M. Agashev

V. S. Sobolev Institute of Geology and Mineralogy Siberian Branch of the Russian Academy of Sciences

Email: shchukinalena@igm.nsc.ru
Russian Federation, Novosibirsk

N. G. Soloshenko

Academician A.N. Zavaritsky Institute of Geology and Geochemistry Ural Branch of the Russian Academy of Sciences

Email: shchukinalena@igm.nsc.ru
Russian Federation, Ekaterinburg

N. P. Pokhilenko

V. S. Sobolev Institute of Geology and Mineralogy Siberian Branch of the Russian Academy of Sciences

Email: shchukinalena@igm.nsc.ru

Academician of the RAS

Russian Federation, Novosibirsk

References

  1. Богатиков О. А., Гаранин В. К., Кононова В. А. и др. Архангельская алмазоносная провинция. М.: Изд-во Московского Университета, 1999. 524 с.
  2. Кононова В. А., Голубева Ю. Ю., Богатиков О. А., Каргин А. В. Алмазоносность кимберлитов Зимнебережного поля (Архангельская область) // Геология рудных месторождений. 2007. Т. 49. № 6. С. 483–505.
  3. Beard A. D., Downes H., Hegner E., Sablukov S. M. Geochemistry and mineralogy of kimberlites from the Arkhangelsk Region, NW Russia: Evidence for transitional kimberlite magma types // Lithos. 2000. V. 51. P. 47–73. doi: 10.1016/S0024-4937(99)00074-2.
  4. Mahotkin I. L., Gibson S. A., Thompson R. N. et al. Late Devonian diamondiferous kimberlite and alkaline picrite (proto-kimberlite?) magmatism in the Arkhangelsk region, Russia // Journal of Petrology. 2000. V. 41. P. 201–227. doi: 10.1093/petrology/41.2.201.
  5. Smith C. B., Gurney J. J., Skinner E. M. W. et al. Geochemical character of southern African kimberlites: A new approach based on isotopic constraints // Geological Society of South Africa Transactions. 1985. V. 88. P. 267–280.
  6. Голубев Ю. К., Прусакова Н. А., Голубева Ю. Ю. Кепинские кимберлиты, Архангельская область // Руды и металлы. 2010. № 1. C. 38–45.
  7. Голубева Ю. Ю., Щербакова Т. Е., Колесникова Т. И. Особенности вещественного состава кимберлитов трубки ЦНИГРИ-Архангельская, Зимнебережное поле // Руды и Металлы. 2009. № 4. С. 66–73.
  8. Агашева Е. В., Гудимова А. И., Червяковский В. С., Агашев А. М. Контрастная алмазоносность кимберлитов трубок им. В. Гриба и ЦНИГРИ-Архангельская (Архангельская алмазоносная провинция) как следствие различий в составе и эволюции литосферной мантии: данные по концентрациям главных и редких элементов в ксенокристах граната // Геология и геофизика. 2023. № 12. С. 1751–1777. doi: 10.15372/GiG2023155
  9. Scott Smith B. H., Nowicki T. E., Russell J. K. et al. A glossary of kimberlite and related terms. Scott-Smith Petrology Inc.: North Vancouver. 2018. Part 1 – 144 pp, Part 2 – 59 pp, Part 3 – 56 pp.
  10. Николаева И. В., Палесский С. В., Козьменко О. А., Аношин Г. Н. Определение редкоземельных и высокозарядных элементов в стандартных геологических образцах методом масс-спектрометрии с индуктивно-связанной плазмой (ИСП-МС) // Геохимия. 2008. № 7. С. 1–6.
  11. Pin C., Joannon S., Bosq Ch., Le Fèvre B., Gauthier P.J. Precise determination of Rb, Sr, Ba, and Pb in geological materials by isotope dilution and ICP-quadrupole mass spectrometry following separation of the analytes // Journal of Analytical Atomic Spectrometry. 2003. V. 18. P. 135–141. doi: 10.1039/b211832g.
  12. Faure G. Principles of isotope geology. New York: Wiley, 1986. 608 p.
  13. White W. M. Geochemistry. New Jersey: John Wiley & Sons, 2020. 960 p.
  14. Taylor W. R., Tompkins L. A., Haggerty S. E. Comparative geochemistry of West African kimberlites: Evidence for a micaceous kimberlite endmember of sublithospheric origin // Geochimica and Cosmochimica Acta. 1994. V. 58. № 19. P. 4017–4037. doi: 10.1016/0016-7037(94)90264-X.
  15. McDonough W. F., Sun S. S. The composition of the Earth // Chemical Geology. 1995. V. 120. P. 223–253. doi: 10.1016/0009-2541(94)00140-4.
  16. Agasheva E. V. Magmatic material in sandstone shows prospects for new diamond deposits within the Northern East European platform // Minerals. 2021. № 11 (4), Art. 339. doi: 10.3390/min11040339
  17. Hofmann A. W. Mantle geochemistry: the message from oceanic volcanism // Nature. 1997. V. 385. P. 219–229. doi: 10.1038/385219a0.
  18. Agashev A. M., Watanabe T., Bydaev D. A. et al. Geochemistry of kimberlites from the Nakyn field, Siberia: evidence for unique source composition // Geology. 2001. V. 29. № 3. P. 267–270. doi: 10.1130/0091-7613(2001)029<0267:GOKFTN>2.0.CO;2.
  19. Rosenthal A., Foley S. F., Pearson D. G. et al. Petrogenesis of strongly alkaline primitive volcanic rocks at the propagating tip of the western branch of the East African Rift // Earth and Planetary Science Letters. 2009. V. 284. № 1–2. P. 236–248. doi: 10.1016/j.epsl.2009.04.036.
  20. Agashev A. M., Nakai S., Serov I. V. et al. Geochemistry and origin of the Mirny field kimberlites, Siberia // Mineralogy and Petrology. 2018. V. 112 (Suppl 2). P. 597–608. doi: 10.1007/s00710-018-0617-4.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The layout of igneous objects of the Arkhangelsk diamondiferous province (a) with details [6] for the Kepinsky field (b). 1–6 – igneous fields (according to [1]): 1 – Zolotitskoye, 2 – Kepinskoye, 3 – Turyinskoye, 4 – Izhmozerskoye, 5 – Verkhotinskoye, 6 – Melskoye. The red line underlines the kimberlite objects of the Kepinsky field, for which data on the composition of the Rb–Sr and Sm–Nd isotope systems were previously obtained [1–4].

Download (362KB)
3. Fig. 2. Photographs of kimberlite samples from the TsNIGRI-Arkhangelskaya pipe.

Download (788KB)
4. Fig. 3. BSE image of kimberlite plates from the TsNIGRI-Arkhangelskaya pipe. Grt – garnet, Rt – rutile, Cr-Spl – chromium-bearing spinel, Phl – phlogopite, Ilm – ilmenite, Zrn – zircon, Ap – apatite, Srp – serpentine, Chl – chlorite, Cal – calcite, Dol ‒ dolomite, M – magmaclast, MO – microcrysts of altered olivine, XEN – altered xenolith.

Download (895KB)
5. Fig. 4. Features of the bulk composition of kimberlites of the TsNIGRI-Arkhangelskaya pipe in the distribution of SiO2/MgO (a), Ni/MgO (b), TiO2/K2O (c), CaO/Al2O3 (d), Yb/Al2O3 (d), Ba/Nb-La/Yb (e). Composition fields of kimberlites of the V. Grib, Zolotitsky and Kepinsky fields include only the compositions of samples for which the calculated contamination index (C.I. [14]) <1.5. Rock compositions [1-4, 16]. Composition fields of kimberlites of groups I and II [5].

Download (588KB)
6. Fig. 5. Concentrations of rare elements in kimberlites of the TsNIGRI-Arkhangelskaya pipe normalized to the primitive mantle [15]. Compositions of kimberlites for the Zolotitskoye field and the V. Grib pipe are shown only for samples with C.I. ≤1.5. Data on the compositions of rocks of the Zolotitskoye and Kepinsky fields and the V. Grib pipe [1–4, 16].

Download (442KB)
7. Fig. 6. Sr and Nd isotopic composition of kimberlites of the TsNIGRI-Arkhangelskaya pipe. Data on kimberlites of the Zolotitsky and Kepinsky fields and the V. Grib pipe [1–4]. Fields of kimberlites of groups I and II [5]; primitive mantle [12]; MORB, OIB, EM1, EM2 [17]; kimberlites of the Nakyn field [18].

Download (181KB)
8. Supplement
Download (16KB)

Copyright (c) 2024 Russian Academy of Sciences