Recent data on the isotopes and geochemistry of kimberlites of the TSNIGRI-Arkhangelskaya pipe, Arkhangelsk diamondiferous province (Northern East-European platform)
- Authors: Agasheva E.V.1, Zyryanova L.V.1, Agashev A.M.1, Soloshenko N.G.2, Pokhilenko N.P.1
-
Affiliations:
- V. S. Sobolev Institute of Geology and Mineralogy Siberian Branch of the Russian Academy of Sciences
- Academician A.N. Zavaritsky Institute of Geology and Geochemistry Ural Branch of the Russian Academy of Sciences
- Issue: Vol 517, No 1 (2024)
- Pages: 68-77
- Section: GEOCHEMISTRY
- Submitted: 31.01.2025
- Published: 13.12.2024
- URL: https://edgccjournal.org/2686-7397/article/view/650003
- DOI: https://doi.org/10.31857/S2686739724070082
- ID: 650003
Cite item
Abstract
The first data on the bulk and isotopic (Sr, Nd) composition of kimberlites from the low-diamondiferous TSNIGRI-Arkhangelskaya pipe, located in the Kepino field of the Arkhangelsk diamondiferous province, are presented. It is shown that the kimberlites belong to the moderate titanium type of kimberlites of the province and differ significantly from the previously studied kimberlites of the Kepino field in lower concentrations of TiO2, Ba, high field strength and light rare earth elements. Among all the kimberlites of the province, the kimberlites of the TSNIGRI-Arkhangelskaya pipe have the most radiogenic Sr composition (87Sr/86Sr t from 0.7068 to 0.7089), which may be due to a combination of several factors. It has been established that the kimberlites of the pipe are represented by two varieties, which have differences both in the concentrations of major and trace elements, and in the compositions of Sr and Nd isotopes. The composition of Nd isotopes (εNd from 0 to –0.6) for variety I kimberlites indicates their enriched source in the lithospheric mantle. Kimberlites of variety II have a less radiogenic Nd composition (εNd from –3.5 to –4.9), the interpretation of which is ambiguous: their formation from an even more ancient enriched source inside the lithospheric mantle compared to variety I cannot be excluded.
Full Text

About the authors
E. V. Agasheva
V. S. Sobolev Institute of Geology and Mineralogy Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: shchukinalena@igm.nsc.ru
Russian Federation, Novosibirsk
L. V. Zyryanova
V. S. Sobolev Institute of Geology and Mineralogy Siberian Branch of the Russian Academy of Sciences
Email: shchukinalena@igm.nsc.ru
Russian Federation, Novosibirsk
A. M. Agashev
V. S. Sobolev Institute of Geology and Mineralogy Siberian Branch of the Russian Academy of Sciences
Email: shchukinalena@igm.nsc.ru
Russian Federation, Novosibirsk
N. G. Soloshenko
Academician A.N. Zavaritsky Institute of Geology and Geochemistry Ural Branch of the Russian Academy of Sciences
Email: shchukinalena@igm.nsc.ru
Russian Federation, Ekaterinburg
N. P. Pokhilenko
V. S. Sobolev Institute of Geology and Mineralogy Siberian Branch of the Russian Academy of Sciences
Email: shchukinalena@igm.nsc.ru
Academician of the RAS
Russian Federation, NovosibirskReferences
- Богатиков О. А., Гаранин В. К., Кононова В. А. и др. Архангельская алмазоносная провинция. М.: Изд-во Московского Университета, 1999. 524 с.
- Кононова В. А., Голубева Ю. Ю., Богатиков О. А., Каргин А. В. Алмазоносность кимберлитов Зимнебережного поля (Архангельская область) // Геология рудных месторождений. 2007. Т. 49. № 6. С. 483–505.
- Beard A. D., Downes H., Hegner E., Sablukov S. M. Geochemistry and mineralogy of kimberlites from the Arkhangelsk Region, NW Russia: Evidence for transitional kimberlite magma types // Lithos. 2000. V. 51. P. 47–73. doi: 10.1016/S0024-4937(99)00074-2.
- Mahotkin I. L., Gibson S. A., Thompson R. N. et al. Late Devonian diamondiferous kimberlite and alkaline picrite (proto-kimberlite?) magmatism in the Arkhangelsk region, Russia // Journal of Petrology. 2000. V. 41. P. 201–227. doi: 10.1093/petrology/41.2.201.
- Smith C. B., Gurney J. J., Skinner E. M. W. et al. Geochemical character of southern African kimberlites: A new approach based on isotopic constraints // Geological Society of South Africa Transactions. 1985. V. 88. P. 267–280.
- Голубев Ю. К., Прусакова Н. А., Голубева Ю. Ю. Кепинские кимберлиты, Архангельская область // Руды и металлы. 2010. № 1. C. 38–45.
- Голубева Ю. Ю., Щербакова Т. Е., Колесникова Т. И. Особенности вещественного состава кимберлитов трубки ЦНИГРИ-Архангельская, Зимнебережное поле // Руды и Металлы. 2009. № 4. С. 66–73.
- Агашева Е. В., Гудимова А. И., Червяковский В. С., Агашев А. М. Контрастная алмазоносность кимберлитов трубок им. В. Гриба и ЦНИГРИ-Архангельская (Архангельская алмазоносная провинция) как следствие различий в составе и эволюции литосферной мантии: данные по концентрациям главных и редких элементов в ксенокристах граната // Геология и геофизика. 2023. № 12. С. 1751–1777. doi: 10.15372/GiG2023155
- Scott Smith B. H., Nowicki T. E., Russell J. K. et al. A glossary of kimberlite and related terms. Scott-Smith Petrology Inc.: North Vancouver. 2018. Part 1 – 144 pp, Part 2 – 59 pp, Part 3 – 56 pp.
- Николаева И. В., Палесский С. В., Козьменко О. А., Аношин Г. Н. Определение редкоземельных и высокозарядных элементов в стандартных геологических образцах методом масс-спектрометрии с индуктивно-связанной плазмой (ИСП-МС) // Геохимия. 2008. № 7. С. 1–6.
- Pin C., Joannon S., Bosq Ch., Le Fèvre B., Gauthier P.J. Precise determination of Rb, Sr, Ba, and Pb in geological materials by isotope dilution and ICP-quadrupole mass spectrometry following separation of the analytes // Journal of Analytical Atomic Spectrometry. 2003. V. 18. P. 135–141. doi: 10.1039/b211832g.
- Faure G. Principles of isotope geology. New York: Wiley, 1986. 608 p.
- White W. M. Geochemistry. New Jersey: John Wiley & Sons, 2020. 960 p.
- Taylor W. R., Tompkins L. A., Haggerty S. E. Comparative geochemistry of West African kimberlites: Evidence for a micaceous kimberlite endmember of sublithospheric origin // Geochimica and Cosmochimica Acta. 1994. V. 58. № 19. P. 4017–4037. doi: 10.1016/0016-7037(94)90264-X.
- McDonough W. F., Sun S. S. The composition of the Earth // Chemical Geology. 1995. V. 120. P. 223–253. doi: 10.1016/0009-2541(94)00140-4.
- Agasheva E. V. Magmatic material in sandstone shows prospects for new diamond deposits within the Northern East European platform // Minerals. 2021. № 11 (4), Art. 339. doi: 10.3390/min11040339
- Hofmann A. W. Mantle geochemistry: the message from oceanic volcanism // Nature. 1997. V. 385. P. 219–229. doi: 10.1038/385219a0.
- Agashev A. M., Watanabe T., Bydaev D. A. et al. Geochemistry of kimberlites from the Nakyn field, Siberia: evidence for unique source composition // Geology. 2001. V. 29. № 3. P. 267–270. doi: 10.1130/0091-7613(2001)029<0267:GOKFTN>2.0.CO;2.
- Rosenthal A., Foley S. F., Pearson D. G. et al. Petrogenesis of strongly alkaline primitive volcanic rocks at the propagating tip of the western branch of the East African Rift // Earth and Planetary Science Letters. 2009. V. 284. № 1–2. P. 236–248. doi: 10.1016/j.epsl.2009.04.036.
- Agashev A. M., Nakai S., Serov I. V. et al. Geochemistry and origin of the Mirny field kimberlites, Siberia // Mineralogy and Petrology. 2018. V. 112 (Suppl 2). P. 597–608. doi: 10.1007/s00710-018-0617-4.
Supplementary files
