U–Pb-(SHRIMP-II)-age of zircon from granites of Bolshoy Tyuters Island (Gulf of Finland, Russia) and the problem of the Ediacaran thermal event in the region

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

New data on the U–Pb age (SHRIMP-II) and trace element composition (SIMS) of zircons from granites of Bolshoy Tyuters Island (Outer Islands of the Gulf of Finland) are presented. The upper intersection of the discordia (1825±11 Ma) is taken as the age of crystallization of granites cutting through secondary quartzites, and thereby determines their youngest age. Subconcordant zircons located in the upper part of the discordia has growth oscillatory zoning and geochemical characteristics of zircons of magmatic origin. The age of the lower intersection of discordia and concordia is about 570 Ma, supported by the independent generation of zircons, represented by black in the CL domains and rims in magmatic zircons, which are characterized by increased contents of non-formula elements (light REE, Ca, P, Ti, Nb, etc. ), up to anomalous values. The most probable interpretation of the age of the lower intersection of discordia and concordia can be considered the Timan (Ediacaran) or Finnmark (Early Caledonian) thermal activation of the Fennoscandian Shield, previously established based on zircons from gneisses of the Kola series.

Full Text

Restricted Access

About the authors

S. G. Skublov

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences; Empress Catherine II Saint Petersburg Mining University

Author for correspondence.
Email: skublov@yandex.ru
Russian Federation, Saint Petersburg; Saint Petersburg

E. N. Terekhov

Geological Institute, Russian Academy of Sciences; Sсhmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: skublov@yandex.ru
Russian Federation, Moscow; Moscow

N. B. Kuznetsov

Geological Institute, Russian Academy of Sciences

Email: skublov@yandex.ru

Corresponding Member of the RAS

Russian Federation, Moscow

A. B. Makeyev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Email: skublov@yandex.ru
Russian Federation, Moscow

L. I. Salimgaraeva

Institute of Precambrian Geology and Geochronology, Russian Academy of Sciences; Empress Catherine II Saint Petersburg Mining University

Email: skublov@yandex.ru
Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Eklund O., Korsman K., Scheini B. Jakob Johannes Sederholm // Lithos. 2010. V. 116. P. 203–208.
  2. Cagnard F., Gapais D., Barbey P. Collision tectonics involving juvenile crust: The example of the southern Finnish Svecofennides // Prec. Res. 2007. V. 154. P. 125–141.
  3. Левченков О. А., Богданов Ю. Б., Комаров А. Н., Яковлева С. З., Макеев А. Ф. Изотопный возраст кварцевых порфиров хогландской серии // ДАН. 1998. Т. 358. № 4. С. 511–513.
  4. Терехов Е. Н., Макеев А. Б., Прокофьев В. Ю., Щербакова Т. Ф., Балуев А. С., Ермолаев Б. В. Природа вторичных кварцитов острова Большой Тютерс (Финский залив, Россия) // Литосфера. 2017. Т. 17. № 6. С. 62–80.
  5. Heinonen A., Mänttäri I., Rämö O. T., Andersen T., Larjamo K. A priori evidence for zircon antecryst entrainment in megacrystic Proterozoic granites // Geology. 2016. V. 44. P. 227–230.
  6. Levashova E. V., Mamykina M. E., Skublov S. G., Galankina O. L., Li Q. L., Li X. H. Geochemistry (TE, REE, Oxygen) of zircon from leucogranites of the Belokurikhinsky Massif, Gorny Altai, as indicator of formation conditions // Geochem. Int. 2023. V. 61. P. 1323–1339.
  7. Скублов С. Г, Левашова Е. В., Мамыкина М. Е., Гусев Н. И., Гусев А. И. Полифазный Белокурихинский массив гранитов, Горный Алтай: изотопно-геохимическое исследование циркона // Записки Горного ин-та. 2024. Т. 268. C. 552–575.
  8. Hoskin P. W. O., Schaltegger U. The composition of zircon and igneous and metamorphic petrogenesis // Zircon. Rev. Mineral. Geochem. 2003. V. 53. P. 27–62.
  9. Geisler T., Schleicher H. Improved U–Th–total Pb dating of zircons by electron microprobe using a simple new background modeling procedure and Ca as a chemical criterion of fluid-induced U–Th–Pb discordance in zircon // Chem. Geol. 2000. V. 163. P. 269–285.
  10. Hoskin P. W. O. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia // Geochim. Cosmochim. Acta. 2005. V. 69. P. 637–648.
  11. Mezger K., Krogstad E. J. Interpretation of discordant U‐Pb zircon ages: An evaluation // Journal of Metamorphic Geology. 1997. V. 15. P. 127–140.
  12. Балтыбаев Ш. К., Левченков О. А., Глебовицкий В. А., Левский Л. К., Матуков Д. И., Бережная Н. Г. U-Pb-датирование циркона интрузии плагиогранитов с свекофеннидах юго-востока Балтийского щита: особенности верхнего и нижнего пересечения дискордии с конкордией // ДАН. 2005. Т. 402. № 6. С. 800–803.
  13. Högdahl K., Gromet L. P., Broman C. Low P-T Caledonian resetting of U-rich Paleoproterozoic zircons, central Sweden // Amer. Mineral. 2001. V. 86. P. 534–546.
  14. Скублов С. Г., Мыскова Т. А., Марин Ю. Б., Астафьев Б. Ю., Богомолов Е. С., Львов П. А. Геохимия разновозрастных кайм циркона в гнейсах кольской серии (SIMS, SHRIMP-II) и проблема раннекаледонской термальной активизации Кольского кратона // ДАН. 2013. Т. 453. № 5. С. 544–550.
  15. Kuznetsov N. B., Belousova E. A., Alekseev A. S., Romanyuk T. V. New data on detrital zircons from the sandstones of Lower Cambrian Brusov Formation (White-Sea region, East-European craton): unraveling the timing of the onset of the Arctida-Baltica collision // International Geology Review. 2014. V. 56. P. 1945–1963.
  16. Roberts R. J., Corfu F., Torsvik T. H., Ashwal L. D., Ramsay D. M. Short-lived mafic magmatism at 560–570 Ma in the northern Norwegian Caledonides: U–Pb zircon ages from the Seiland Igneous Province // Geol. Mag. 2006. V. 143. P. 887–903.
  17. Кузнецов Н. Б. Комплексы протоуралид-тиманид и позднедокембрийско-раннепалеозойская эволюция восточного и северо-восточного обрамления Восточно-Европейской платформы / Автореф. дис. … докт. геол.-мин. наук. М.: ГИН РАН, 2009. 475 с.
  18. Шацилло А. В., Рудько С. В., Латышева И. В., Рудько Д. В., Федюкин И. В., Паверман В. И., Кузнецов Н. Б. Гипотеза “блуждающего экваториального диполя”: к проблеме низкоширотных оледенений и конфигурации геомагнитного поля позднего докембрия // Физика Земли. 2020. № 6. С. 113–134.
  19. Шацилло А. В., Кузнецов Н. Б., Павлов В. Э., Федонкин М. А., Прияткина Н. С., Серов С. Г., Рудько С. В. Первые магнитостратиграфические данные о стратотипе лопатинской свиты (северо–восток Енисейского кряжа): проблемы ее возраста и палеогеографии Сибирской платформы на рубеже протерозоя и фанерозоя // ДАН. 2015. Т. 465. № 4. С. 464–468.
  20. Fedorova N. M., Bazhenov M. L., Meert J. G., Kuznetsov N. B. Ediacaran-Cambrian paleogeography of Baltica: A paleomagnetic view from a diamond pit on the White Sea east coast // Lithosphere. 2016. V. 8. P. 564–573.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Simplified geological map of Bolshoy Tyuters Island: (a) position among the Outer Islands of the Gulf of Finland; (b) map of the island indicating the location of sample GT-25 (1 – Quaternary deposits, sands, less often moraine; 2 – raised beach; 3 – secondary quartzites: in coastal cliffs (a), outcrops in the forest (b); 4 – granites: a – massif, b – dikes; 5 – structural elements; position of sample GT-25).

Download (200KB)
3. Fig. 2. Images of a section of GT-25 granite in a polarizing microscope (with an analyzer, magnification 10, field of view size 4 mm). Mineral designations: Qz – quartz, Pl – plagioclase, Kfs – potassium feldspar, Bt – biotite, Ms – muscovite, Ttn – titanite.

Download (787KB)
4. Fig. 3. Image of zircon grains from GT-25 granite in cathodoluminescence (CL) mode. Here and below, the numbers of analysis points coincide with Tables 1 and 2. The crater diameter is approximately 20 µm.

Download (316KB)
5. Fig. 4. Graph with concordia for zircon from GT-25 granite.

Download (70KB)
6. Fig. 5. REE distribution spectra for analyzed zircon sections from GT-25 granite, showing: (a) subconcordant and ancient ages; (b) moderately discordant age values; (c) strongly discordant age values.

Download (215KB)
7. Fig. 6. REE and P ratio for analyzed zircon sections from GT-25 granite (here and in the figures below: 1 – ancient zircon; 2 – zircon from a subconcordant cluster; 3 – moderately discordant zircon; 4 – highly discordant zircon).

Download (68KB)
8. Fig. 7. Ratio of Ca and U content in zircon from GT-25 granite.

Download (67KB)
9. Fig. 8. Ratio of La content and SmN/LaN ratio for zircon from GT-25 granite.

Download (85KB)

Copyright (c) 2024 Russian Academy of Sciences