Dynamic characteristics of the stratospheric polar vortices

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The dynamic characteristics of the stratospheric polar vortices at levels from 100 to 1 hPa (minimum vortex area, minimum mean wind speed along the vortex edge, and minimum wind speed at which there is a dynamic barrier), obtained using the vortex delineation method with geopotential based on ERA5 reanalysis data, presented for the first time. Seasonal changes and average winter vertical profiles of the vortex area, mean wind speed along the vortex edge, and mean temperature inside the vortex for the Antarctic and Arctic polar vortices were obtained. The average daily probability of weakening of the dynamic barrier along the vortex edge in winter was determined based on data for 1979–2021 over the Arctic and Antarctic. It is shown that the lowest probability of weakening of the dynamic barrier (and possible breakdown of the polar vortex) in winter can be traced at levels from 30 to 3 hPa and reaches less than 50% in the Arctic and less than 1% in the Antarctic. At the 50 hPa level, the probability of weakening of the dynamic barrier is 53.7% in the Arctic and 1.4% in the Antarctic.

Full Text

Restricted Access

About the authors

V. V. Zuev

Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: vzuev@list.ru

Corresponding Member of the RAS

Russian Federation, Tomsk

E. S. Savelieva

Institute of Monitoring of Climatic and Ecological Systems of the Siberian Branch of the Russian Academy of Sciences; A.M. Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences

Email: vzuev@list.ru
Russian Federation, Tomsk; Moscow

References

  1. Scherhag R. Neue Methoden der Wetteranalyse und Wetterprognose. Berlin: Springer, 1948. 424 p.
  2. Gutenburg B. New data on the lower stratosphere // B. Am. Meteorol. Soc. 1949. V. 30. № 2. P. 62–64.
  3. Brasefield C. J. Winds and temperatures in the lower stratosphere // J. Meteorol. 1950. V. 7. № 1. P. 66–69.
  4. Palmer C. E. The stratospheric polar vortex in winter // J. Geophys. Res. 1959. V. 64. № 7. P. 749–764.
  5. Farman J. C., Gardiner B. G., Shanklin J. D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction // Nature. 1985. V. 315. № 6016. P. 207–210.
  6. Holton J. R. The dynamics of sudden stratospheric warmings // Ann. Rev. Earth Planet. Sci. 1980. V. 8. P. 169–190.
  7. Holton J. R., Haynes P. H., McIntyre M. E. et al. Stratosphere-troposphere exchange // Rev. Geophys. 1995. V. 33. № 4. P. 403–439.
  8. Kolstad E. W., Breiteig T., Scaife A. A. The association between stratospheric weak polar vortex events and cold air outbreaks in the Northern Hemisphere // Q. J. Roy. Meteor. Soc. 2010. V. 136. No 649. P. 886–893.
  9. Hersbach H., Bell B., Berrisford P. et al. The ERA5 global reanalysis // Q. J. Roy. Meteor. Soc. 2020. V. 146. № 729. P. 1–51.
  10. Zuev V. V., Savelieva E. Stratospheric polar vortex dynamics according to the vortex delineation method // J. Earth Syst. Sci. 2023. V. 132. № 1. P. 39.
  11. Lawrence Z. D., Manney G. L., Wargan K. Reanalysis intercomparisons of stratospheric polar processing diagnostics // Atmos. Chem. Phys. 2018. V. 18. № 18. P. 13547–13579.
  12. Smith M. L., McDonald A. J. A quantitative measure of polar vortex strength using the function M // J. Geophys. Res. 2014. V. 119. № 10. P. 5966–5985.
  13. Варгин П. Н., Кострыкин С. В., Ракушина Е. В. и др. Исследование изменчивости дат весенних перестроек циркуляции стратосферы и объема полярных стратосферных облаков в Арктике по данным моделирования и реанализа // Известия РАН. ФАО. 2020. Т. 56. № 5. С. 526–539.
  14. Vargin P., Kostrykin S., Koval A. et al. Arctic stratosphere changes in the 21st century in the Earth system model SOCOLv4 // Front. Earth Sci. 2023. V. 11. P. 1214418.
  15. Vargin P. N., Kostrykin S. V., Volodin E. M. et al. Arctic stratosphere circulation changes in XXI century in simulations of INM CM5 // Atmosphere. 2022. V. 13. № 1. P. 25.
  16. Лукьянов А. Н., Варгин П. Н., Юшков В. А. Исследование с помощью лагранжевых методов аномально устойчивого арктического стратосферного вихря, наблюдавшегося зимой 2019–2020 гг. // Известия РАН, ФАО. 2021. Т. 57. № 3. С. 278–285.
  17. Zuev V. V., Savelieva E. Antarctic polar vortex dynamics depending on wind speed along the vortex edge // Pure Appl. Geophys. 2022. V. 179. № 6–7. P. 2609–2616.
  18. Holton J. An Introduction to Dynamic Meteorology. 4th Edition. California: Academic Press, 2004. 535 p.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Intra-annual daily average changes in the area of ​​the Antarctic and Arctic polar vortices at 2, 10 and 50 hPa levels from 1979 to 2021.

Download (1MB)
3. Fig. 2. Intra-annual daily average changes in the mean wind speed along the boundary of the Antarctic and Arctic polar vortices at the levels of 2, 10 and 50 hPa from 1979 to 2021.

Download (1MB)
4. Fig. 3. Intra-annual daily mean changes in mean temperature inside the Antarctic and Arctic polar vortices at 2, 10 and 50 hPa levels from 1979 to 2021.

Download (1MB)
5. Fig. 4. Intra-annual daily mean changes in the mean ozone mass mixing ratio inside the Antarctic and Arctic polar vortices at 2, 10, and 50 hPa levels from 1979 to 2021.

Download (1MB)
6. Fig. 5. Intra-annual daily average changes in the mean geopotential inside the Antarctic and Arctic polar vortices at 2, 10 and 50 hPa levels from 1979 to 2021.

Download (1MB)
7. Fig. 6. Averaged over the winter period 1979–2021 values ​​of the polar vortex area, average wind speed along the vortex boundary, and average temperature inside the vortex at levels from 70 to 1 hPa for the Antarctic and Arctic polar vortices with standard deviation.

Download (431KB)

Copyright (c) 2024 Russian Academy of Sciences