On the uniqueness of an inverse coefficient problem when building analytical models of Mercury’s magnetic field
- Authors: Stepanova I.E.1, Kolotov I.I.2, Lukuyanenko D.V.2, Shchepetilov A.V.2
-
Affiliations:
- Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences
- Moscow State Lomonosov University
- Issue: Vol 514, No 1 (2024)
- Pages: 181-188
- Section: EXPLORING THE EARTH FROM SPACE
- Submitted: 31.01.2025
- Published: 27.06.2024
- URL: https://edgccjournal.org/2686-7397/article/view/650036
- DOI: https://doi.org/10.31857/S2686739724010214
- ID: 650036
Cite item
Abstract
We consider the uniqueness conditions of the inverse coefficient problem arising in analytical models of Mercury’s magnetic field.
Full Text

About the authors
I. E. Stepanova
Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Author for correspondence.
Email: tet@ifz.ru
Russian Federation, Moscow
I. I. Kolotov
Moscow State Lomonosov University
Email: tet@ifz.ru
Department of Physics
Russian Federation, MoscowD. V. Lukuyanenko
Moscow State Lomonosov University
Email: tet@ifz.ru
Department of Physics
Russian Federation, MoscowA. V. Shchepetilov
Moscow State Lomonosov University
Email: tet@ifz.ru
Department of Physics
Russian Federation, MoscowReferences
- Strakhov V.N., Stepanova I.E. Solution of gravity problems by the S-approximation method (regional version) // Izvestiya. Physics of the Solid Earth. 2002. V. 38. № 7. P. 535‒544.
- Stepanova I.E., Shchepetilov A.V., Mikhailov P.S., Analytical Models of the Physical Fields of the Earth in Regional Version with Ellipticity // Izvestiya. Physics of the Solid Earth. 2022. V. 58. No 3. P. 406‒419. doi: 10.1134/S1069351322030089
- Johnson C.L., et al. MESSENGER observations of Mercury's magnetic field structure // J. Geophys. Res. 2012. 117. E00L14. doi: 10.1029/2012JE004217.
- Ness N.F., Behannon K.W., Lepping R.P., Whang Y. C., Schatten K. H. Magnetic field observations near Mercury: Preliminary results from Mariner 10 // Science 1974. 185. 151– 160. doi: 10.1126/science.185.4146.151.
- Alexeev I.I., et al. Mercury's magnetospheric magnetic field after the first two MESSENGER flybys // Icarus. 2010. 209. 23– 39, doi: 10.1016/j.icarus.2010.01.024
- Anderson B.J., et al. The magnetic field of Mercury// Space Sci. Rev. 2010. 152. 307–339. doi: 10.1007/s11214-009-9544-3.
- Benkhoff J.J., van Casteren H., Hayakawa M., Fujimoto H., Laakso M., Novara P., Ferri H.R., Middleton, Ziethe R. BepiColombo—Comprehensive exploration of Mercury: Mission overview and science goals // Planet. Space Sci. 2010. 58. 2–20. doi: 10.1016/j.pss.2009.09.020.
- Kolotov I.I., Lukyanenko D.V., Stepanova I.E., Yanfei W., Yagola A.G. Recovering the Near-Surface Magnetic Image of Mercury from Satellite Observations// Remote Sens. 2023. 15(8). 2125; https://doi.org/10.3390/rs15082125
- Арнольд В.И.,.Хесин Б.А. Топологические методы в гидродинамике. М. Изд-во МЦНМО. 2007. 393 с.
- Лаврентьев М.А., Романов В.Г., Шишатский С.П. Некорректные задачи математической физики и анализа. Москва. Наука. 1980. 286 с.
- Гласко В.Б., Степанова И.Э. О единственности в одной из коэффициентных обратных задач, связанных с технологическими процессами // Вестник Моск. Университета. Сер. Физика. Астрономия. 1992. Т. 33. № 1. С. 20‒23.
- Михайлов В.П. Диффренциальные уравнения в частных производных. М. Наука. 1983. 391 с.
- Фридман А. Уравнения с частными производными параболического типа. М. Мир. 1968. 427 с.
- Toepfer S., Narita Y., Glassmeier K.H., et al. The Mie representation for Mercury’s magnetic field // Earth Planets Space .2021. 73. 65 . https://doi.org/10.1186/s40623-021-01386-4
