New data on isotopic U-Pb age (LA-ICP-MS method) of zircon from intrusive rocks of the Kuru-Tegerek gold-copper-molybdenum skarn deposit (Middle Tien Shan, Kyrgyzstan)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents new isotopic U–Pb data (LA-ICP-MS) method of zircon from the main types of intrusive rocks at the Kuru-Tegerek gold-copper-molybdenum skarn deposit situated in the Chatkal segment of the Middle Tien Shan. This and other gold, copper, tungsten and molybdenum deposits are parts of the extended Late Paleozoic metallogenic belt of Tien Shan. The concordant isotopic U–Pb values obtained for zircon autocrysts from the rocks of sequential intrusive phases span over the interval from approximately 323 to 311 Ma. This interval comprises the crystallization of gabbro-diorite (from 323.5±2.5 Ma to 323.2±6.8 Ma) and tonalite (from 321.4±3.8 Ma to 311±3.8 Ma). The age dates obtained for these zircon autocrysts correspond to the emplacement of these moderate-potassic intrusions in the Late Carboniferous and are almost coincident with the isotopic dates previously known for the high-potassic intrusions of the porphyry Cu–Au–Mo deposits of the Almalyk mineralized cluster (Kurama segment of the Middle Tien Shan), which were also emplaced in the Late Carboniferous (about 330–310 Ma). This corresponds to the subduction tectonic regime occurred in this region in relation to the steep-dipping (in the Kurama segment) or flat (in the Chatkal segment) subduction of a tectonic plate toward the north, under the structures of the Kazakhstan-Northern Tien Shan continental massif and accreted segments of the Middle Tien Shan. The intrusive rocks studied at the Kuru-Tegerek deposit contain also zircon xenocrysts (including these in the core of complex crystals) with the isotopic U–Pb age of some 1.9–2.1 Gb. These dates are in agreement with the age of metamorphic rocks in the Tarim craton basement and indicate the presence of the ancient continental crust in this segment of the Middle Tien Shan.

Full Text

Restricted Access

About the authors

S. G. Soloviev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Author for correspondence.
Email: serguei07@mail.ru
Russian Federation, Moscow

S. G. Kryazhev

Central Research Institute of Geological Prospecting for Base and Precious Metals

Email: serguei07@mail.ru
Russian Federation, Moscow

D. V. Semenova

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Email: serguei07@mail.ru
Russian Federation, Novosibirsk

Y. A. Kalinin

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Email: serguei07@mail.ru
Russian Federation, Novosibirsk

N. S. Bortnikov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Email: serguei07@mail.ru

Academician of the RAS

Russian Federation, Moscow

References

  1. Кудрин В. С., Соловьев С. Г., Ставинский В. А., Кабардин Л. Л. Золото-медно-молибден-вольфрамовый рудный пояс Тянь-Шаня // Геология рудных месторождений. 1990. № 4. С. 13–26.
  2. Yakubchuk A., Cole A., Seltmann R., Shatov V. Tectonic setting, characteristics and regional exploration criteria for gold mineralization in central Eurasia: the southern Tien Shan province as a key example // Goldfarb R., Nielsen R. (Eds.). Integrated Methods for Discovery: Global Exploration in Twenty-First Century. Economic Geology Special Publication. 2002. V. 9. P. 77–201.
  3. Seltmann R., Konopelko D., Biske G., Divaev F., Sergeev S. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt // Journal of Asian Earth Sciences. 2011. V. 42. P. 821–838.
  4. Seltmann R., Porter T. M., Pirajno F. Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: a review // Journal of Asian Earth Sciences. 2014. V. 79. P. 810–841.
  5. Cheng Z., Zhang Z., Chai F., Hou T., Santosh M., Turesebekov A., Nurtaev B. S. Carboniferous porphyry Cu-Au deposits in the Almalyk orefield, Uzbekistan: the Sarycheku and Kalmakyr examples // International Geology Review. 2017. V. 60. P. 1–20.
  6. Zhao X.-B., Xue C.-J., Chi G.-X., Mo X.-X., Nurtaev B., Zhang G.-Z. Zircon and molybdenite geochronology and geochemistry of the Kalmakyr porphyry Cu–Au deposit, Almalyk district, Uzbekistan: Implications for mineralization processes // Ore Geol. Rev. 2017. V. 86. P. 807–824.
  7. Seliverstov K. V., Ges’ M. D. Petrochemical features of magmatites and major kinematic parameters of the middle Carboniferous–early Permian subduction of the Turkestan paleo-ocean (Tien Shan, Northern Fergana) // Russian Geol. Geophys. 2001. V. 42. P. 1393–1397.
  8. Soloviev S. G., Kryazhev S. G., Dvurechenskaya S. S. Geology, mineralization, and fluid inclusion study of the Kuru-Tegerek Au-Cu-Mo skarn deposit in the Middle Tien Shan, Kyrgyzstan // Mineralium Deposita. 2018. V. 53(2). P. 195–223.
  9. Подлесский К. В., Власова Д. К., Кудря П. Ф. Скарны и руды месторождения Куру-Тегерек. В сб. Коржинский Д. С. (ред.), Метасоматизм, минералогия и генезис золотых и серебряных месторождений. М.: Изд-во “Наука”, 1984. С. 167–212.
  10. Новикова Н. Ю. Образование скарнов в Срединном Тянь-Шане (на примере месторождения Куру-Тегерек): автореферат дис. ... канд. геол.-мин. наук. М.: МГУ, 1989. 24 с.
  11. Rowins S. Reduced porphyry copper-gold deposits: A new variation on an old theme // Geology. 2000. V. 28(6). P. 491–491.
  12. Zu B., Seltmann R., Xue C., Wang T., Dolgopolova A., Li C., Zhou L., Pak N., Ivleva E., Chai M., Zhao X. Multiple episodes of Late Paleozoic Cu-Au mineralization in the Chatkal-Kurama terrane: New constraints from the Kuru-Tegerek and Bozymchak skarn deposits, Kyrgyzstan // Ore Geology Reviews. 2019. V. 113. Paper 103077.
  13. Griffin W. L., Powell W. J., Pearson N. J., O’Reilly S. Y. GLITTER: Data reduction software for laser ablation ICP-MS. // Sylvester P. (ed.), Miner. Assoc. of Canada, Short Course Series, 2008. V. 40. P. 307‒311.
  14. Hiess J., Condon D. J., McLean N., Noble S. R. U 238 / U 235 systematics in terrestrial uranium-bearing minerals // Science. 2012. V. 335. P. 1610–1614.
  15. Slama J., Kosler J., Condon D. J. et al. Plesovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis // Chemical Geology. 2008. V. 249. № 1–2. P. 1–35.
  16. Ludwig K. User’s Manual for Isoplot 3.00. Berkeley, CA: Berkeley Geochronology Center, 2003. P. 1–70.
  17. Black L. P., Kamo S. L., Allen C. M. et al. Improved P 206 b/ U 238 microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards // Chemical Geology. 2004. V. 205. P. 115–140.
  18. Miller J. S., Matzel J. E., Miller C. F., Burgess S. D., Miller R. B. Zircon growth and recycling during the assembly of large, composite arc plutons // J. Volcanol. Geotherm. Res. 2007. V. 167. № 1/4. P. 282–299.
  19. Pearce J. A., Peate D. W. Tectonic implications of the composition of volcanic arc magmas. // Annual Rev. Earth Planet. Sci. 1995. V. 23. P. 251–285.
  20. Kröner A., Alexeiev D. V., Kovach V. P., Rojas-Agramonte Ya., Tretyakov A. A., Mikolaichuk A. V., Xie H. Q., Sobel E. R. Zircon ages, geochemistry and Nd isotopic systematics for the Palaeoproterozoic 2.3 to 1.8 Ga Kuilyu Complex, East Kyrgyzstan – the oldest continental basement fragment in the Tianshan orogenic belt // Journal of Asian Earth Sciences. 2017. V. 135. P. 122–135.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of the late Paleozoic metallogenic belt of Tien Shan. 1 – faults of different orders, 2 – late Paleozoic active continental margin (Middle Tien Shan), 3 – continental blocks of the basement of the Tarim and Karakum cratons, 4 – accretionary wedge terranes thrust onto the passive continental margin with economic cratonic basement, 5 – main (a) and secondary (b) gold deposits, 6 – gold-copper-molybdenum-tungsten deposits, 7 – molybdenum-tungsten deposits, 8 – polymetallic-tungsten deposits, 9 – tin-tungsten deposits, 10 – tin deposits, 11 – main (a) and secondary (b) copper-molybdenum and gold-copper porphyry deposits, 12 – boundary signs.

Download (1002KB)
3. Fig. 2. Geological schemes of the Chatkal and Kuramin segmental Middle Tien Shan (A) and the Kuru-Tegerek deposit (B) (according to data from [8, 10, 12]). A: 1 - Permian granitoids, 2 - Late Carboniferous granitoids (Sandalash complex in the Chatkal segment), 3 - Early-Late Carboniferous granitoids, 4 - exclusively acidic Carboniferous-Permian volcanics, 5 - exclusively basic Carboniferous-Permian volcanics and coal-bearing molasses, 6 - Devonian-Carboniferous limestones, dolomites, conglomerates, sandstones, 7 - Silurian and older carbonate and siliceous rocks, 8 - faults, 9 - gold deposits, 10 - copper-gold deposits, 11 - epithermal silver-gold deposits, 12 - molybdenum-gold-copper-porphyry deposit, 13 - skarn molybdenum-tungsten deposits, 14 - polymetallic (Pb-Zn, Ag-U-Co-Ni-As and other) deposits. B: 1 – Cenozoic deposits, 2 – Lower Stone dolomites and limestones, 3 – tonalites, 4 – gabbro-diorites, 5 – skarns, 6 – ore bodies, 7 – zones of carbonate-philisite metasomatites, 8 – sampling location for isotope dating of zircons.

Download (1MB)
4. Fig. 3. Cathodoluminescent crystal images of zircon (the circles are marked with points where isotopic dating was carried out, the point numbers correspond to those in Table 2) and concordia diagrams for zircons from the rock of the intrusive stock of the Kuru-Tegerek deposit (thin solid ellipses are the results of single analyses, the dashed ellipse corresponds). The errors of single analyses and calculated concordant ages are given at the 2σ level (according to the concordant result). A – concordia diagram taking into account the age of zircon autocrysts and xenocrysts. B-F – sections of the concordia diagram for zircon autocrysts.

Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences