Crystallization temperatures of vetreny belt komatiitic basalts, Karelia, based on partition of alumina between olivine and chromite

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Archean-Proterozoic transition in Earth's history is marked by significant changes in mantle dynamics and temperature regimes. A notable consequence is the disappearance of Al-depleted komatiites in the late Archean and the nearly complete absence of true komatiites since the Proterozoic. In this study, we present the investigation of the 2.41 Ga komatiitic basalts of the Vetreny Belt, dating back to the Archean-Proterozoic boundary. These rocks provide unique data on the composition of olivine and chromite, as well as on the crystallization temperatures based on Al-in-olivine geothermometry for Vetreny Belt komatiitic basalts. The temperatures of the earliest stages of crystallization were approximately 1240±25°C, indicating the presence of water in the melt and aligning with measured water contents of 0.4±0.2 wt. % H2O in the melt inclusions. However, during crystallization, the komatiitic basalt melt underwent degassing, resulting in mass crystallization and a temperature rise of approximately 20°C due to latent heat release. The degassing of water from the melt suggests crystallization in the surface conditions.

Full Text

Restricted Access

About the authors

E. V. Asafova

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Author for correspondence.
Email: asafoff@geokhi.ru
Russian Federation, Moscow

A. N. Koshlyakova

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: asafoff@geokhi.ru
Russian Federation, Moscow

A. V. Sobolev

University Grenoble Alpes

Email: asafoff@geokhi.ru

Academician of the RAS, l’Institut des Sciences de la Terre

France, CS40700, 38058 Grenoble CEDEX 9

D. P. Tobelko

Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Email: asafoff@geokhi.ru
Russian Federation, Moscow

N. N. Koshlyakova

Lomonosov Moscow State University

Email: asafoff@geokhi.ru

Faculty of Geology

Russian Federation, Moscow

S. V. Mezhelovskaya

Geological Institute of the Russian Academy of Sciences

Email: asafoff@geokhi.ru
Russian Federation, Moscow

References

  1. Bickle M. J., Hawkesworth C. J., Martin A., et al. Mantle composition derived from the chemistry of ultramafic lavas // Nature. 1976. V. 263. № 5578. P. 577–580.
  2. Barnes S. J., Often M. Ti-rich komatiites from northern Norway // Contrib. Mineral. Petrol. 1990. V. 105. № 1. P. 42–54.
  3. Arndt N. T., Brügmann G. E., Lehnert K. et al. Geochemistry, petrogenesis and tectonic environment of Circum-Superior Belt basalts, Canada // Geol. Soc. Lond. Spec. Publ. 1987. V. 33. № 1. P. 133–145.
  4. Echeverria L. M. Tertiary or Mesozoic komatiites from Gorgona Island, Colombia: field relations and geochemistry // Contrib. Mineral. Petrol. 1980. V. 73. № 3. P. 253–266.
  5. Hanski E., Walker R. J., Huhma H. et al. Origin of the Permian-Triassic komatiites, northwestern Vietnam // Contrib. Mineral. Petrol. 2004. V. 147. P. 453–469.
  6. Puchtel I. S., Haase K. M., Hofmann A. W. et al. Petrology and geochemistry of crustally contaminated komatiitic basalts from the Vetreny Belt, southeastern Baltic Shield: evidence for an early Proterozoic mantle plume beneath rifted Archean continental lithosphere // Geochim. Cosmochim. Acta. 1997. V. 61. № 6. P. 1205–1222.
  7. Puchtel I. S., Touboul M., Blichert-Toft J. et al. Lithophile and siderophile element systematics of Earth’s mantle at the Archean–Proterozoic boundary: Evidence from 2.4 Ga komatiites // Geochim. Cosmochim. Acta. 2016. V. 180. P. 227–255.
  8. Nekrylov N., Kamenetsky V. S., Savelyev D. P. et al. Platinum-group elements in Late Quaternary high-Mg basalts of eastern Kamchatka: Evidence for minor cryptic sulfide fractionation in primitive arc magmas // Lithos. V. 412. P. 106608.
  9. Batanova V. G., Thompson J. M., Danyushevsky L. V. et al. New olivine reference material for in situ microanalysis // Geostand. Geoanal. Res. 2019. V. 43 № 3. P. 453–473.
  10. Sobolev A. V., Hofmann A. W., Kuzmin D. V. et al. The amount of recycled crust in sources of mantle-derived melts // Science. 2007. V. 316. № 5823. P. 412–417.
  11. Асафов Е. В., Кошлякова А. Н., Соболев А. В. и др. Температуры кристаллизации коматиитовых базальтов Ветреного пояса, Карелия // Труды ВЕСЭМПГ. 2023. Т. 782. С. 53–56.
  12. Coogan L. A., Saunders A. D., Wilson R. N. Aluminum-in-olivine thermometry of primitive basalts: Evidence of an anomalously hot mantle source for large igneous provinces // Chem. Geol. 2014. V. 368. P. 1–10.
  13. Ballhaus C., Berry R. F., Green D. H. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle // Contrib. Mineral. Petrol. 1991. V. 107. P. 27–40.
  14. Gaetani G. A., Grove T. L. The influence of water on melting of mantle peridotite // Contrib. Mineral. Petrol. 1998. V. 131. P. 323–46.
  15. Sobolev A. V., Asafov E. V., Gurenko A. A. et al. Komatiites reveal a hydrous Archaean deep-mantle reservoir // Nature. 2016. V. 531. № 7596. P. 628–632.
  16. Blundy J., Cashman K., Humphreys M. Magma heating by decompression-driven crystallization beneath andesite volcanoes // Nature. 2006. V. 443. № 7107. P. 76–80.
  17. Danyushevsky L. V., Plechov P. Y. Petrolog3: Integrated software for modeling crystallization processes // Geochem. Geophys. Geosyst. 2011. V. 12. № 7.
  18. Ford C. E., Russell D. G., Craven J. A. et al. Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn // J. Petrol. 1983. V. 24. № 3. P. 256–266.
  19. Ariskin A. A., Frenkel M. Y., Barmina G. S., Nielsen R. L. COMAGMAT: a Fortran program to model magma differentiation processes // Comput. Geosci. 1993. V. 19. № 8. Р. 1155–1170.
  20. Ariskin A. A., Nikolaev G. S. An empirical model for the calculation of spinel-melt equilibria in mafic igneous systems at atmospheric pressure: 1. Chromian spinels // Contrib. Mineral. Petrol. 1996. V. 123. P. 282–292.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic cross-section of the Victoria lava lake, Vetreny Belt, Karelia [7]. Arrows on the cross-section indicate the sampling sites from the cumulative zone used in the work.

Download (991KB)
3. Fig. 2. Micrograph of olivine from olivine cumulate sample 12103: a) image in reflected electrons, b) P distribution map demonstrates magmatic zoning characteristic of olivine. Ol – olivine, cpx – clinopyroxene.

Download (1MB)
4. Fig. 3. Composition of olivine from komatiite basalts of the Vetreny Belt, sample 12103 (this work) in comparison with the compositions of olivine from typical Archean-Proterozoic komatiites [10] and sample 12105 [11].

Download (708KB)
5. Fig. 4. Crystallization temperatures of komatiite basalts of the Vetreny Belt obtained using Al thermometry in olivine [12]. Data for sample 12105 from [11]. The dashed lines show the crystallization lines of the komatiite basalt melt without aqueous fluid and the initial melt containing 1 wt.% H2O. Large symbols show the average crystallization temperatures for samples 12105 and 12103 (for Fo <86 mol.%). The arrow reflects the increase in temperature in the melt.

Download (378KB)

Copyright (c) 2024 Russian Academy of Sciences