Crystallization temperatures of vetreny belt komatiitic basalts, Karelia, based on partition of alumina between olivine and chromite
- Authors: Asafova E.V.1, Koshlyakova A.N.1, Sobolev A.V.2, Tobelko D.P.1, Koshlyakova N.N.3, Mezhelovskaya S.V.4
-
Affiliations:
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
- University Grenoble Alpes
- Lomonosov Moscow State University
- Geological Institute of the Russian Academy of Sciences
- Issue: Vol 516, No 2 (2024)
- Pages: 558-565
- Section: PETROLOGY
- Submitted: 31.01.2025
- Published: 12.12.2024
- URL: https://edgccjournal.org/2686-7397/article/view/650043
- DOI: https://doi.org/10.31857/S2686739724060071
- ID: 650043
Cite item
Abstract
The Archean-Proterozoic transition in Earth's history is marked by significant changes in mantle dynamics and temperature regimes. A notable consequence is the disappearance of Al-depleted komatiites in the late Archean and the nearly complete absence of true komatiites since the Proterozoic. In this study, we present the investigation of the 2.41 Ga komatiitic basalts of the Vetreny Belt, dating back to the Archean-Proterozoic boundary. These rocks provide unique data on the composition of olivine and chromite, as well as on the crystallization temperatures based on Al-in-olivine geothermometry for Vetreny Belt komatiitic basalts. The temperatures of the earliest stages of crystallization were approximately 1240±25°C, indicating the presence of water in the melt and aligning with measured water contents of 0.4±0.2 wt. % H2O in the melt inclusions. However, during crystallization, the komatiitic basalt melt underwent degassing, resulting in mass crystallization and a temperature rise of approximately 20°C due to latent heat release. The degassing of water from the melt suggests crystallization in the surface conditions.
Keywords
Full Text

About the authors
E. V. Asafova
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Author for correspondence.
Email: asafoff@geokhi.ru
Russian Federation, Moscow
A. N. Koshlyakova
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Email: asafoff@geokhi.ru
Russian Federation, Moscow
A. V. Sobolev
University Grenoble Alpes
Email: asafoff@geokhi.ru
Academician of the RAS, l’Institut des Sciences de la Terre
France, CS40700, 38058 Grenoble CEDEX 9D. P. Tobelko
Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences
Email: asafoff@geokhi.ru
Russian Federation, Moscow
N. N. Koshlyakova
Lomonosov Moscow State University
Email: asafoff@geokhi.ru
Faculty of Geology
Russian Federation, MoscowS. V. Mezhelovskaya
Geological Institute of the Russian Academy of Sciences
Email: asafoff@geokhi.ru
Russian Federation, Moscow
References
- Bickle M. J., Hawkesworth C. J., Martin A., et al. Mantle composition derived from the chemistry of ultramafic lavas // Nature. 1976. V. 263. № 5578. P. 577–580.
- Barnes S. J., Often M. Ti-rich komatiites from northern Norway // Contrib. Mineral. Petrol. 1990. V. 105. № 1. P. 42–54.
- Arndt N. T., Brügmann G. E., Lehnert K. et al. Geochemistry, petrogenesis and tectonic environment of Circum-Superior Belt basalts, Canada // Geol. Soc. Lond. Spec. Publ. 1987. V. 33. № 1. P. 133–145.
- Echeverria L. M. Tertiary or Mesozoic komatiites from Gorgona Island, Colombia: field relations and geochemistry // Contrib. Mineral. Petrol. 1980. V. 73. № 3. P. 253–266.
- Hanski E., Walker R. J., Huhma H. et al. Origin of the Permian-Triassic komatiites, northwestern Vietnam // Contrib. Mineral. Petrol. 2004. V. 147. P. 453–469.
- Puchtel I. S., Haase K. M., Hofmann A. W. et al. Petrology and geochemistry of crustally contaminated komatiitic basalts from the Vetreny Belt, southeastern Baltic Shield: evidence for an early Proterozoic mantle plume beneath rifted Archean continental lithosphere // Geochim. Cosmochim. Acta. 1997. V. 61. № 6. P. 1205–1222.
- Puchtel I. S., Touboul M., Blichert-Toft J. et al. Lithophile and siderophile element systematics of Earth’s mantle at the Archean–Proterozoic boundary: Evidence from 2.4 Ga komatiites // Geochim. Cosmochim. Acta. 2016. V. 180. P. 227–255.
- Nekrylov N., Kamenetsky V. S., Savelyev D. P. et al. Platinum-group elements in Late Quaternary high-Mg basalts of eastern Kamchatka: Evidence for minor cryptic sulfide fractionation in primitive arc magmas // Lithos. V. 412. P. 106608.
- Batanova V. G., Thompson J. M., Danyushevsky L. V. et al. New olivine reference material for in situ microanalysis // Geostand. Geoanal. Res. 2019. V. 43 № 3. P. 453–473.
- Sobolev A. V., Hofmann A. W., Kuzmin D. V. et al. The amount of recycled crust in sources of mantle-derived melts // Science. 2007. V. 316. № 5823. P. 412–417.
- Асафов Е. В., Кошлякова А. Н., Соболев А. В. и др. Температуры кристаллизации коматиитовых базальтов Ветреного пояса, Карелия // Труды ВЕСЭМПГ. 2023. Т. 782. С. 53–56.
- Coogan L. A., Saunders A. D., Wilson R. N. Aluminum-in-olivine thermometry of primitive basalts: Evidence of an anomalously hot mantle source for large igneous provinces // Chem. Geol. 2014. V. 368. P. 1–10.
- Ballhaus C., Berry R. F., Green D. H. High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle // Contrib. Mineral. Petrol. 1991. V. 107. P. 27–40.
- Gaetani G. A., Grove T. L. The influence of water on melting of mantle peridotite // Contrib. Mineral. Petrol. 1998. V. 131. P. 323–46.
- Sobolev A. V., Asafov E. V., Gurenko A. A. et al. Komatiites reveal a hydrous Archaean deep-mantle reservoir // Nature. 2016. V. 531. № 7596. P. 628–632.
- Blundy J., Cashman K., Humphreys M. Magma heating by decompression-driven crystallization beneath andesite volcanoes // Nature. 2006. V. 443. № 7107. P. 76–80.
- Danyushevsky L. V., Plechov P. Y. Petrolog3: Integrated software for modeling crystallization processes // Geochem. Geophys. Geosyst. 2011. V. 12. № 7.
- Ford C. E., Russell D. G., Craven J. A. et al. Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn // J. Petrol. 1983. V. 24. № 3. P. 256–266.
- Ariskin A. A., Frenkel M. Y., Barmina G. S., Nielsen R. L. COMAGMAT: a Fortran program to model magma differentiation processes // Comput. Geosci. 1993. V. 19. № 8. Р. 1155–1170.
- Ariskin A. A., Nikolaev G. S. An empirical model for the calculation of spinel-melt equilibria in mafic igneous systems at atmospheric pressure: 1. Chromian spinels // Contrib. Mineral. Petrol. 1996. V. 123. P. 282–292.
Supplementary files
