Characters of participation of microorganisms in the formation of nodular monazite (kularite), Sakha (Yakutia) Republic, Russia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The presented data showed the important role of microorganisms in the formation of nodular monazites (NM) (kularites) of the Kular Range (Republic of Sakha (Yakutia)). In the NM, microorganisms lithified by REE phosphate (monazite) were identified, represented by cyanobacteria, in the form of peculiar stromatolite-like microstructures, as well as framboidal iron sulfides in monazites. The isotopic composition of organic carbon in koularites corresponds to the biogenic one – δ13С from –22.2 ‰ to –22.3 ‰.

Full Text

Restricted Access

About the authors

S. M. Zhmodik

Institute of Geology and Mineralogy named after. V.S. Sobolev Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: zhmodik@igm.nsc.ru
Russian Federation, Novosibirsk

A. Yu. Rozanov

Institute of Geology and Mineralogy named after. V.S. Sobolev Siberian Branch of the Russian Academy of Sciences; N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences

Email: zhmodik@igm.nsc.ru

Academician of the RAS

Russian Federation, Novosibirsk; Moscow

E. V. Lazareva

Institute of Geology and Mineralogy named after. V.S. Sobolev Siberian Branch of the Russian Academy of Sciences

Email: zhmodik@igm.nsc.ru
Russian Federation, Novosibirsk

P. O. Ivanov

Arctic Capital LLC

Email: zhmodik@igm.nsc.ru
Russian Federation, Yakutsk, Sakha (Yakutia) Republic

D. K. Belyanin

Institute of Geology and Mineralogy named after. V.S. Sobolev Siberian Branch of the Russian Academy of Sciences

Email: zhmodik@igm.nsc.ru
Russian Federation, Novosibirsk

N. S. Karmanov

Institute of Geology and Mineralogy named after. V.S. Sobolev Siberian Branch of the Russian Academy of Sciences

Email: zhmodik@igm.nsc.ru
Russian Federation, Novosibirsk

V. A. Ponomarchuk

Institute of Geology and Mineralogy named after. V.S. Sobolev Siberian Branch of the Russian Academy of Sciences

Email: zhmodik@igm.nsc.ru
Russian Federation, Novosibirsk

B. Yu. Saryg-ool

Institute of Geology and Mineralogy named after. V.S. Sobolev Siberian Branch of the Russian Academy of Sciences

Email: zhmodik@igm.nsc.ru
Russian Federation, Novosibirsk

E. A. Zhegallo

N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences

Email: zhmodik@igm.nsc.ru
Russian Federation, Moscow

O. S. Samylina

N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences

Email: zhmodik@igm.nsc.ru
Russian Federation, Moscow

T. N. Moroz

Institute of Geology and Mineralogy named after. V.S. Sobolev Siberian Branch of the Russian Academy of Sciences

Email: zhmodik@igm.nsc.ru
Russian Federation, Novosibirsk

References

  1. Земель В. К. Анализ монацитов из золотоносных россыпей Алдана и Ю. Енисея // Журнал прикладной химии. 1936. Т. IX. № 11. С. 1969–1971.
  2. Rosenblum S., Mosier S. E. Mineralogy and Occurrence of Eu-Rich Dark Monazite // Geol. Survey Prof. Paper. 1983. № 1181. 67 p.
  3. Zi J.-W., Muhling J. R., Rasmussen B. Geochemistry of low-temperature (<350◦C) metamorphic and hydrothermal monazite // Earth-Science Reviews. 2024. V. 249. № 104668.
  4. Lazareva E. V., Zhmodik S. M., Prokopiev A. V., Karmanov N. S., Sergeenko A. I. Nodular monazite from placers in the Kular Ridge (Arctic Siberia, Russia): composition and age // Russian Geology and Geophysics. 2018. V. 59 P. 1330–1347. https://doi.org/10.1016/j.rgg.2018.09.010
  5. Некрасов И. Я., Некрасова Р. А. Куларит – аутигенная разновидность монацита // Докл. АН СССР. 1983. Т. 283. № 3. С. 688–693.
  6. Осовецкий Б. М., Меньшикова И. А. Куларит Вятско-Камской впадины // Вестник Пермского университета. Геология. 2011. № 4. С. 8–19.
  7. Федянин А. Н., Соловьев М. Н. Гос Геол Карта России 1:200 000. Яно-Индигирская серия. Лист R-53-IX, X. М.: Московский ф-л ФГБУ «ВСЕГЕИ», 2016. 106 с.
  8. Saryg-ool B. Yu., Bukreeva L. N., Myagkaya I. N., Tolstov A. V., Lazareva E. V., Zhmodik S. M. Influence of sample digestion on the determination of high contents of rare-earth and high field strength elements in geological samples by ICP-AES and ICP-MS (case study of the Tomtor deposit) // JSFU. Chemistry. 2020. № 4. P. 593–605. https://doi.org/10.175.16/1998-2836-0208
  9. Скублов С. Г., Красоткина А. О., Макеев А. Б., Томсен Т. Б., Серре С. Х., Абдрахманов И. А. Геохимия редких элементов (LA-ICP-MS) в монаците из рудопроявления Ичетъю, Средний Тиман // Труды Ферсмановской научной сессии ГИ КНЦ РАН. 2018. Т. 15. С. 338–341. https://doi.org/10.31241/FNS.2018.15.084
  10. Gromet L. P., Dymck R. F., Haskin L. A., Korotev R. L. The “North American Shale Composite”: its compilation, major and trace element characteristics // Geochim. Cosmochim Acta. 1984. V. 48. P. 2469–2482.
  11. Haskin L. A., Haskin M. A., Frey F. A. Wildman T. R. Relative and absolute terrestrial adundances of the rare earths / In Ahrens L.H. (ed.). Origin and distribution of the elements. 1968. V. I. Pergamon, Oxford. P. 889–911.
  12. Lazareva E. V., Zhmodik S. M., Dobretsov N. L., Tolstov A. V., Shcherbov B. L., Karmanov N. S., Gerasimov E. Yu., Bryanskaya A. V. Main minerals of abnormally high-grade ores of the Tomtor deposit (Arctic Siberia) // Russian Geology and Geophysics. 2015. V. 56. № 6. P. 844–873. https://doi.org/10.1016/j.rgg.2015.05.003.
  13. Bauld J. Microbial mats: stromatolites. N.Y., 1981. P. 38–59.
  14. Жмур С. И., Кравченко С. М., Розанов А. Ю., Жегалло Е. А. О генезисе редкоземельно-ниобиевых руд Томтора (север Сибирской платформы) // ДАН. 1994. Т. 336. № 3. С. 372–375.
  15. Dobretsov N. L., Zhmodik S. M., Lazareva E. V., Bryanskaya A. V., Ponomarchuk V. A., Saryg-ool B. Yu., Kirichenko I. S., Tolstov A. V., Karmanov N. S. Structural and Morphological Features of the Participation of Microorganisms in the Formation of Nb–REE–Rich Ores of the Tomtor Field (Russia) // Doklady Earth Sciences. 2021. V. 496. Part 2. P. 135–138.
  16. Ershova V. B., Khudoley A. K., Prokopiev A. V., Tuchkova M. I., Fedorov P. V., Kazakova G. G., Shishlov S. B., O’Sullivan P. Trans-Siberian Permian rivers: A key to understanding Arctic sedimentary provenance // Tectonophysics. 2016. V. 691. P. 220–233.
  17. Schieber J. Iron Sulfide Formation // Encyclopedia of Geobiology. Springer Dordrecht. 2012. P. 486–502 https://doi.org/10.1007/978-1-4020-9212-1
  18. Paper M., Koch M., Jung P., Lakatos M., Nilges T., Brück T. B. Rare earths stick to rare cyanobacteria: Future potential for bioremediation and recovery of rare earth elements // Front. Bioeng. Biotechnol. 2023. V. 11:1130939. https:// doi.org/10.3389/fbioe.2023.1130939
  19. Ohnuki T., Jiang M., Sakamoto F., Kozai N., Yamasaki S., Yu Q., Tanaka K., Utsunomiya S., Xia X., Yang K., He J. Sorption of trivalent cerium by a mixture of microbial cells and manganese oxides: Effect of microbial cells on the oxidation of trivalent cerium// Geochim. Cosmochim. Acta. 2015. V. 163. P. 1–13. https://doi.org/10.1016/j.gca.2015.04.043
  20. Tsuruta T. Selective accumulation of light or heavy rare earth elements using gram-positive bacteria // Colloids Surfaces B: Biointerfaces. 2006. V. 52. P. 117–122. https://doi.org/10.1016/j.colsurfb.2006.04.014

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Electronic image of NM grain (sample KMGV-3), in which biomorphic structures and the distribution of O, Si, Al, P, C, La, Ce and Nd were detected.

Download (3MB)
3. Fig. 2. SEM images of NM grains with different levels of detail (A, B, D) and emphasized bacteriomorphic (“stromalite-like”) microstructures (B, G, E). White – monazite; SiO2 – quartz; Gn – galena; Al-P – florencite ((REE)Al3(PO4)2(OH)6; Gth – goethite.

Download (2MB)
4. Fig. 3. SEM images of a grain of NM containing FP. Fig. 5G shows FP with mackinawite located in monazite, in which each crystal is surrounded by a film of organic matter. White – monazite; Py – pyrite; Ab – albite; C – hydrocarbons; FP are indicated by arrows in Fig. 5A.

Download (1MB)
5. Fig. 4. Results: a – PDR (KMGV-3), Mnz – monazite, Mca – mica, Qz – quartz, Rhs – rhodochrosite, Kln – kaolinite, Ant – anatase, Xnt – xenotime; b – IR (KMGV-2, KMGV-3); c – Raman spectroscopy (KMGV-1, KS3-2, KHMOD2) of the Kular Ridge NM. The Raman spectra of all samples contain the bands – D1, G of disordered hydrocarbons.

Download (365KB)
6. Fig. 5. Distribution of REE in monazites and NM, normalized to NASC [10, 11]: 1 – Kular Ridge (average for NM Table 1); 2 – Ichet’yu area, Middle Timan (average for monazites [9]); 3 – Ur Creek (average for monazites [4]); 4 – Kular Ridge (this study, average according to SEM data of monazites); 5–7 – Ur Creek, average for monazites in different NM zones. 8 – REE in ores of the Buranny area of ​​the Tomtor Nb-REE deposit [12].

Download (699KB)
7. Fig. 6. Distribution of REE at different points (see Fig. 2) of NM (EDS SEM data, exposure 270 s). The content of elements is normalized according to NASC [10, 11].

Download (386KB)

Copyright (c) 2024 Russian Academy of Sciences