Dissociation kinetics of methane hydrate in frozen rocks at decreasing external pressure: mathematical and laboratory modeling

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Dissociation of pore methane hydrate in ice- and gas-bearing sediments at external pressure below the equilibrium has been simulated in mathematical and physical (laboratory) models. The mathematical model, along with the experiment, provides constraints on dissociation kinetics. The suggested theoretical model confirms the trend of decreasing hydrate saturation of frozen soil Sh~Aτ(-n). observed previously in experiments. The physical model makes basis for calculating the coefficients A and n, while the mathematical modeling shows how the coefficients depend on the problem parameters. The theoretical estimates agree with the experimental results, both qualitatively and quantitatively. The results of mathematical and physical modeling have implications for key factors that control self-preservation of pore methane hydrates in frozen sediments.

Full Text

Restricted Access

About the authors

M. Ramazanov

Branch of the Joint Institute of High Temperatures, Russian Academy of Sciences; Sadovsky Institute of Geosphere Dynamics

Author for correspondence.
Email: dannaukiozemle@yandex.ru

Institute for Problems of Geothermy and Renewable Energy

Russian Federation, Makhachkala; Moscow

N. Bulgakova

Branch of the Joint Institute of High Temperatures, Russian Academy of Sciences; Dagestan State University of National Economy

Email: dannaukiozemle@yandex.ru

Institute for Problems of Geothermy and Renewable Energy

Russian Federation, Makhachkala; Makhachkala

L. Lobkovsky

Shirshov Institute of Oceanology, Russian Academy of Sciences; Tomsk State University

Email: dannaukiozemle@yandex.ru

Academician of the RAS, Science Department

Russian Federation, Moscow; Tomsk

E. Chuvilin

Tomsk State University; Skolkovo Institute of Science and Technology (Skoltech)

Email: dannaukiozemle@yandex.ru

Science Department, Center for Petroleum Science and Engineering

Russian Federation, Tomsk; Skolkovo Innovation Center, Moscow

D. Davletshina

Sadovsky Institute of Geosphere Dynamics; Tomsk State University; Skolkovo Institute of Sci-ence and Technology (Skoltech)

Email: dannaukiozemle@yandex.ru

Science Department, Center for Petroleum Science and Engineering

Russian Federation, Moscow; Tomsk; Skolkovo Innovation Center, Moscow

N. Shakhova

Sadovsky Institute of Geosphere Dynamics; Tomsk State University; V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch Russian Academy of Sciences

Email: dannaukiozemle@yandex.ru

Science Department

Russian Federation, Moscow; Tomsk; Vladivostok

References

  1. Истомин В. А., Якушев В. С. Газовые гидраты в природных условиях. М.: Недра, 1992. 235 с.
  2. Романовский Н. Н. Основы криогенеза литосферы. М.: Издательство Московского университета. 1993. 336 с.
  3. Chuvilin E. M., Yakushev V. S., Perlova E. V. Gas and possible gas hydrates in the permafrost of Bovanenkovo gas field, Yamal Peninsula, West Siberia // Polarforschung. 2000. 68. P. 215–219.
  4. Трофимук А. А., Макогон Ю. Ф., Якушев В. С. Влияние динамики зон гидратообразования на температурный режим горных пород в области распространения криолитозоны // Геология и геофизика (Советская геология и геофизика). 1986. 27(11). С. 3–10.
  5. Якушев В. С. Природный газ и газовые гидраты в криолитозоне. М.: ВНИИГАЗ, 2009. 192 с.
  6. Chuvilin E., Bukhanov B., Davletshina D., Grebenkin S., Istomin V. Dissociation and Self-Preservation of Gas Hydrates in Permafrost // Geosciences. 2018. 8(12). P. 431:1–431:12.
  7. Ершов Е. Д., Лебеденко Ю. П., Чувилин Е. М., Истомин В. А., Якушев В. С. Особенности существования газовых гидратов в криолитозоне // Доклады Академии наук. 1991. 321(4). С. 788–791.
  8. Якушев В. С., Перлова Е. В., Махонина Н. А., Чувилин Е. М., Козлова Е. В. Газовые гидраты в отложениях материков и островов // Российский химический журнал. 2003. № 3. С. 80–90.
  9. Hachikubo A., Takeya S. Chuvilin E., Istomin V. Preservation phenomena of methane hydrate in pore spaces // Phys. Chem. Chem. Phys. 2011. 13. P. 17449–17452.
  10. Поденко Л. С., Драчук А. О., Молокотина Н. С., Нестеров А. Н. Влияние наночастиц диоксида кремния на кинетику образования и эффективность самоконсервации гидрата метана, получаемого в “сухой воде” // Журнал физической химии. 2018. 92(2). С. 239–246.
  11. Chuvilin E., Davletshina D., Bukhanov B., Mukhametdinova A., Istomin V. Formation of metastability of pore gas hydrates in frozen sediments: experimental evidence // Geosciences. 2022. 12(11). https://doi.org/10.3390/geosciences12110419
  12. Mimachi H., Takeya S., Yoneyama A., Hyodo K., Takeda T., Gotoh Y., Murayama T. Natural gas storage and transportation within gas hydrate of smaller particle: Size dependence of self-preservation phenomenon of natural gas hydrate // Chem. Eng. Sci. 2014. 118. P. 208–213.
  13. Misyura S. Y., Donskoy I. G. Dissociation of natural and artificial gas hydrate // Chemical Engineering Science. 2016. 148. P. 65–77.
  14. Баренблатт Г. И., Лобковский Л. И., Нигматулин Р. И. Математическая модель истечения газа из газонасыщенного льда и газогидратов // ДАН. 2016. 470(4). С. 458–461.
  15. Рамазанов М. М., Лобковский Л. И. Фронтовой режим тепломасспереноса в газогидратном пласте в условиях отрицательных температур // Известия Российской академии наук. Механика жидкости и газа. 2018. № 4. С. 75–89.
  16. Лобковский Л. И., Рамазанов М. М. К теории фильтрации в среде с двойной пористостью // ДАН. 2019. Т. 484. № 3. С. 348–351.
  17. Власов В. А. Математическая модель эффекта самоконсервации газовых гидратов // Инженерно-физический журнал. 2019. Т. 92. № 6. С. 2449–2457.
  18. Lobkovsky L. I., Ramazanov M. M., Semiletov I. P., Alekseev D. A. Mathematical model of the decomposition of unstable gas hydrate accumulations in the cryolithozone // Geosciences. 2022. 12(9). P. 345. https://doi.org/10.3390/geosciences12090345.
  19. Chuvilin E. M., Davletshina D. A., Lupachik M. V. Hydrate formation in frozen and thawing methane-saturated sediments // Earth’s Cryosphere. 2019. 23(2). P. 44–52. https://doi.org/10.21782/EC2541-9994-2019-2.
  20. Shakhova N., Semiletov I., Sergienko V., Lobkovsky L., Yusupov V., Salyuk A., Salomatin A., Chernykh D., Kosmach D., Panteleev G., Nicolsky D., Samarkin V., Joye S., Charkin A., Dudarev O., Meluzov A., Gustafsson O. The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice // Philos. Trans. A Math. Phys. Eng. Sci. 2015. 373(2052). https://doi.org/10.1098/rsta.2014.0451

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic model of the pore space of frozen gas hydrate-saturated sandy soil under equilibrium and nonequilibrium conditions.

Download (558KB)
3. Fig. 2. Three-layer diagram of the dissociation of a gas hydrate granule: (1) – ice crust of thickness δ; (2) – thin layer of methane formed during the decomposition of the gas hydrate; (3) – undissolved methane hydrate, the thermodynamic conditions of which correspond to a steady state.

Download (567KB)
4. Fig. 3. Change in hydrate saturation (Sh) of frozen sand over time at −6°C with a decrease in gas pressure from equilibrium to 0.1 MPa.

Download (76KB)
5. Table 1

Download (66KB)
6. Table 2

Download (77KB)
7. Table 3

Download (66KB)
8. Table 4

Download (67KB)
9. Table 5

Download (86KB)

Copyright (c) 2024 Russian Academy of Sciences