Permafrost boundary change in the Bolshezemelskaya tundra under different scenarios of climate change in the XXI century

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Prognostic estimates of changes in the climatological boundary of the permafrost zone as a function of the average annual air temperature on the territory of the Bolshezemelskaya tundra under various scenarios of the development of the world economy until the middle of the XXI century have been obtained. It is shown that the shift of the climatological boundary of permafrost, determined by the threshold value of the average annual air temperature, in the north-eastern direction observed in the period from 1950 to 2010, according to the adjusted scenario forecasts, obtained using a climate model, will continue in the coming decades under any scenario of the development of the world economy and is an inevitable consequence of anthropogenic influence on the climate. The results of the study are important for assessing the prospects and development of a network of long-term observations, which is being created to monitor the state of permafrost and greenhouse gas fluxes in the Russian Federation.

Full Text

Restricted Access

About the authors

G. A. Alexandrov

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

Author for correspondence.
Email: g.alexandrov@ifaran.ru
Russian Federation, Moscow

A. S. Ginzburg

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

Email: g.alexandrov@ifaran.ru
Russian Federation, Moscow

M. L. Gytarsky

Russian Energy Agency

Email: g.alexandrov@ifaran.ru
Russian Federation, Moscow

A. V. Chernokulsky

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences; Institute of Geography, Russian Academy of Sciences

Email: g.alexandrov@ifaran.ru
Russian Federation, Moscow; Moscow

V. A. Semenov

A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences; Institute of Geography, Russian Academy of Sciences

Email: g.alexandrov@ifaran.ru

Academician of the RAS

Russian Federation, Moscow; Moscow

References

  1. Васильев А. А., Гравис А. Г., Губарьков А. А. и др. Деградация мерзлоты: результаты многолетнего геокриологического мониторинга в западном секторе российской Арктики // Криосфера Земли. 2020. Т. 24, № 2. С. 15–30.
  2. Canadell J. G., Monteiro P. M. S., Costa M. H. L. et al. Global Carbon and other Biogeochemical Cycles and Feedbacks // Climate Change 2021: The Physical Science Basis. Cambridge: Cambridge University Press, 2021. P. 673–816 https://doi.org/10.1017/9781009157896.007
  3. Anisimov O., Nelson F. Application of mathematical models to investigate the interaction between the climate and permafrost // Soviet Meteorology and Hydrology. 1990. № 10. P. 8–13.
  4. Демченко П. Ф., Величко А. А., Елисеев А. В. и др. Зависимость условий распространения вечной мерзлоты от уровня глобального потепления: сравнение моделей, сценариев и данных палереконструкций // Известия РАН. Физика атмосферы и океана. 2002. Т. 38. № 2. С. 165–174.
  5. Peng X., Zhang T., Frauenfeld O.W. et al. Soil freeze depth variability across Eurasia during 1850–2100 // Climatic Change. 2020. V. 158. № 3–4. P. 531–549.
  6. Smith M. W., Riseborough D. W. Climate and the limits of permafrost: a zonal analysis // Permafrost Periglac. Process. 2002. V. 13. № 1. P. 1–15.
  7. Chadburn S. E., Burke E. J., Cox P. M. et al. An observation-based constraint on permafrost loss as a function of global warming // Nature Climate Change. 2017. V. 7. № 5. P. 340–344.
  8. Гаврилова М. К. Современный климат и вечная мерзлота. Новосибирск: Наука, 1981. 121 с.
  9. Alexandrov G.A., Ginzburg V.A., Insarov G.E., Romanovskaya A.A. CMIP6 model projections leave no room for permafrost to persist in Western Siberia under the SSP5-8.5 scenario // Climatic Change. 2021. V. 169. № 3–4. P. 42.
  10. Кислов А. В. Климатология. М.: Академия, 2011. 224 c.
  11. Мельников В. П., Осипов В. И., Брушков А. В. и др. Развитие геокриологического мониторинга природных и технических объектов в криолитозоне Российской Федерации на основе систем геотехнического мониторинга топливно-энергетического комплекса // Криосфера Земли. 2022. Т. 26. № 4. С. 3–18.
  12. Брушков А. В., Дроздов Д. С., Дубровин В. А. и др. Структура и параметры геокриологического мониторинга // Научный вестник Арктики. 2022. № 12. С. 78–88.
  13. ФЗ №297 от 10.07.2023 // Российская газета. 2023, 12 июл. № 9096(8). URL: https://rg.ru/documents/ 2023/07/12/document-1689088543383187.html
  14. WMO. Global Greenhouse Gas Watch Programme. URL: https://wmo.int/activities/global-greenhouse-gas-watch/global-greenhouse-gas-watch-programme
  15. Swart N. C., Cole J. N., Kharin V. V. et al. The Canadian Earth System Model version 5 (CanESM5. 0.3) // Geoscientific Model Development. Copernicus GmbH, 2019. V. 12. № 11. P. 4823–4873.
  16. Compo G. P., Whitaker J. S., Sardeshmukh P. D. et al. The Twentieth Century Reanalysis Project: The Twentieth Century Reanalysis Project // Q. J. R. Meteorol. Soc. 2011. V. 137. № 654. P. 1–28.
  17. O’Neill B. C., Kriegler E., Riahi K. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways // Climatic Change. 2014. V. 122. № 3. P. 387–400.
  18. Shirokova L., Ivanova I., Manasypov R. et al. The evolution of the ecosystems of thermokarst lakes of the Bolshezemelskaya tundra in the context of climate change // E3S Web of Conferences. 2019. V. 98. P. 02010. https://doi.org/10.1051/e3sconf/20199802010
  19. Каверин Д. А., Пастухов А. В., Новаковский А. Б. Особенности современного температурного режима почвогрунтов на участке пересечения бугристого торфяника автодорогой на юге Большеземельской тундры // Криосфера Земли. 2020. Т. 24. № 1. С. 23–33.
  20. Rodenhizer H., Belshe F., Celis G. et al. Abrupt permafrost thaw accelerates carbon dioxide and methane release at a tussock tundra site // Arctic, Antarctic and Alpine Research. 2022. V. 54. № 1. P. 443–464.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Average annual air temperature in the period 1961–1990 and in the period 1981–2010 according to 20CRv3 reanalysis data.

Download (551KB)
3. Fig. 2. The climate transition zone (highlighted in red) from an average annual air temperature below –2°C in the period 1981–2010 to an average annual air temperature above –2°C in the period 2031–2060, based on calculations using the CanESM5 model under various scenarios for the development of the global economy.

Download (533KB)

Copyright (c) 2024 Russian Academy of Sciences