Isotopic U-Pb age of zircon (LA-ICP-MS method) from igneous rocks of the Chorukh-Dairon W-Mo(-Cu-Au) deposit (Tajikistan): first evidences for post-collisional ore formation in the Kurama segment of the Middle Tien Shan

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents isotopic U–Pb zircon data (LA–ICP–MS method) for the main types of high-potassic intrusive rocks of the Chorukh-Dairon W–Mo(–Cu–Au) skarn deposit situated in the Kurama segment of the Middle Tien Shan near the largest porphyry Cu–Mo–Au deposits of the Almalyk mineralized cluster. Together with the other Au, W, Mo and Cu deposits, all these deposits are parts of the extended Late Paleozoic metallogenic belt of Tien Shan. The concordant isotopic U–Pb zircon data obtained for the rocks of successive intrusion phases in the Chorukh-Dairon pluton span from about 298 Ma to 290 Ma. This interval included crystallization of monzodiorite (295.1±3.3 Ma), quartz syenite (294.7±2.3 Ma), quartz monzonite (294.1±2.1 Ma), and monzogranite (293.0±3.0 Ma). These dates correspond to the pluton emplacement at the Late Carboniferous-Early Permian boundary and highlight its younger age compared to the productive high-potassic intrusions of the porphyry Cu–Mo–Au deposits in the Almalyk mineralized cluster, the latter assigned to the Late Carboniferous (about 337–313 Ma and partially to 308–297 Ma). By contrast to the latter, which were intruded in the subduction-related environment, the emplacement of the high-potassic rock of the Chorukh-Dairon pluton occurred in the transitional subduction-related to post-collisional environment or even under an actual post-collisional regime. This allows distinguishing two pulses of ore-bearing Carboniferous-Permian high-potassic calc-alkaline to shoshonitic series magmatism in the Middle Tien Shan. Consistently, there is a metallogenic evolution in the region that was expressed in the transition from porphyry Cu–Mo–Au deposits associated with subduction-related potassic magmatism, and likely evolving toward epithermal Au–Ag deposits, to essentially tungsten (W–Mo–Cu–Au) deposits associated with younger potassic magmatism occurring rather in the post-collisional environment.

About the authors

S. G. Soloviev

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Author for correspondence.
Email: serguei07@mail.ru
Russian Federation, Moscow

S. G. Kryazhev

Central Research Institute of Geological Prospecting for Base and Precious Metals

Email: serguei07@mail.ru
Russian Federation, Moscow

D. V. Semenova

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Email: serguei07@mail.ru
Russian Federation, Novosibirsk

Y. A. Kalinin

V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences

Email: serguei07@mail.ru
Russian Federation, Novosibirsk

N. S. Bortnikov

Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences

Email: serguei07@mail.ru

Academician of the RAS

Russian Federation, Moscow

References

  1. Kudrin V. S., Soloviev S. G., Stavinsky V. A., Kabardin L. L. The gold-copper-molybdenum-tungsten ore belt of the Tien Shan // Internat. Geol. Rev. 1990. V. 32. P. 930–941.
  2. Yakubchuk A., Cole A., Seltmann R., Shatov V. Tectonic setting, characteristics and regional exploration criteria for gold mineralization in central Eurasia: the southern Tien Shan province as a key example / Goldfarb R., Nielsen R. (Eds.) // Integrated Methods for Discovery: Global Exploration in Twenty-First Century. Economic Geology Special Publication. 2002. V. 9. P. 77–201.
  3. Cheng Z., Zhang Z., Chai F., Hou T., Santosh M., Turesebekov A., Nurtaev B. S. Carboniferous porphyry Cu-Au deposits in the Almalyk orefield, Uzbekistan: the Sarycheku and Kalmakyr examples // International Geology Review. 2017. V. 60. P. 1–20.
  4. Zhao X.-B., Xue C.-J., Chi G.-X., Mo X.-X., Nurtaev B., Zhang G.-Z. Zircon and molybdenite geochronology and geochemistry of the Kalmakyr porphyry Cu–Au deposit, Almalyk district, Uzbekistan: Implications for mineralization processes // Ore Geol. Rev. 2017. V. 86. P. 807–824.
  5. Soloviev S. G., Kryazhev S. G. Geology, mineralization, and fluid inclusion characteristics of the Chorukh-Dairon W-Mo-Cu skarn deposit in the Middle Tien Shan, Northern Tajikistan // Ore Geol. Rev. 2017. V. 80. P. 79–102.
  6. Seltmann R., Konopelko D., Biske G., Divaev F., Sergeev S. Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt // Journal of Asian Earth Sciences. 2011. V. 42. P. 821–838.
  7. Seltmann R., Porter T. M., Pirajno F. Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: a review // Journal of Asian Earth Sciences. 2014. V. 79. P. 810–841.
  8. Власова Д. К., Жариков В. А. Контактово-инфильтрационные скарны Чорух-Дайрона / Ред. Коржинский Д. С., Жариков В. А. Метасоматизм и оруденение. Москва, изд-во Наука. 1975. С. 5–80.
  9. Soloviev S. G., Krivoschekov N. N. Petrochemistry of rocks in the Chorukh-Dairon monzonite-syenite-granite pluton, Northern Tajikistan // Geochem. Internat. 2011. V. 49. P. 691–710.
  10. Мамаджанов Ю. Петрология и геохимия шошонит-латитовой ассоциации Кураминской зоны. Автореферат дисс. канд. геол.-мин. наук. Душанбе: Институт геологии Таджикистана. 1995. 24 с.
  11. Волков В. Н., Аракелянц М. М., Таджибаев Г. Т. Возраст магматических и метасоматических пород Чорух-Дайронского грабена по данным калий-аргонового датирования (Срединный Тянь-Шань) // Доклады Таджикской АССР. Серия геологическая. 1990. Т. 12. С. 40–47.
  12. Griffin W. L., Powell W. J., Pearson N. J., O’Reilly S. Y. GLITTER: Data reduction software for laser ablation ICP-MS / Sylvester P. (Ed.). // Miner. Assoc. of Canada. Short Course Series. 2008. V. 40. P. 307–311.
  13. Hiess J., Condon D.J., McLean N., Noble S. R. 238U/235U systematics in terrestrial uranium-bearing minerals // Science. 2012. V. 335. P. 1610–1614.
  14. Slama J., Kosler J., Condon D. J., et al. Plesovice zircon – a new natural reference material for U-Pb and Hf isotopic microanalysis // Chemical Geology. 2008. V. 249. № 1–2. P. 1–35.
  15. Ludwig K. User’s Manual for Isoplot 3.00 // Berkeley Geochronology Center. Berkeley, CA, 2003. P. 1–70
  16. Black L. P., Kamo S. L., Allen C. M. et al. Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards // Chemical Geology. 2004. V. 205. P. 115–140.
  17. Miller J. S., Matzel J. E., Miller C. F., Burgess S. D., Miller R. B. Zircon growth and recycling during the assembly of large, composite arc plutons // J. Volcanol. Geotherm. Res. 2007. V. 167. № 1/4. P. 282–299.
  18. Sisson V. B., Pavlis T. L., Roeske S. M., Thorkelson D. J. Introduction: An overview of ridge-trench interactions in modern and ancient settings / In: Sisson, V. B., Roeske, S. M., and Pavlis, T. L. (eds.). // Geology of a transpressional orogen developed during ridge-trench interaction along the North Pacific margin. Geological Society of America Special Paper. 2003. V. 371. P. 1–18.
  19. Pearce J. A., Peate D. W. Tectonic implications of the composition of volcanic arc magmas // Annual Rev. Earth Planet. Sci. 1995. V. 23. P. 251–285.
  20. Lustrino M., Wilson M. The circum-Mediterranean anorogenic Cenozoic igneous province // Earth-Science Reviews. 2007. V. 81. P. 1–65.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences