The Borodino meteorite: evolution on parent body
- Authors: Sukhanova K.G.1, Kuznetsov A.B.1, Skublov S.G.1,2
-
Affiliations:
- Institute of Precambrian Geology and Geochronology Russian Academy of Sciences
- Saint-Petersburg Mining University
- Issue: Vol 516, No 1 (2024)
- Pages: 401-408
- Section: GEOCHEMISTRY
- Submitted: 31.01.2025
- Published: 18.12.2024
- URL: https://edgccjournal.org/2686-7397/article/view/650066
- DOI: https://doi.org/10.31857/S2686739724050105
- ID: 650066
Cite item
Abstract
The article discusses the results of a mineralogical and petrographic study of the Borodino meteorite (H5). For the first time, meteorite minerals are described and their chemical compositions are given. The following were found in the Borodino meteorite: olivine (Fa 18.16±1.15), low-Ca pyroxene – (clino)enstatite (En 81.37±1.73, Wo 1.18±0.31), high-Ca pyroxene – augite (En 57.23±1.57, Wo 39.38±2.68), diopside (En 51, Wo 45), pigeonite (En 69, Wo 6), plagioclases – oligoclase (An 12.16±1.24, Or 5.68±2.12), andesine (An 48.23±1.84, Or 1.23±0.12), anorthoclase (An 0, Or 36) and sanidine (An 0, Or 40.00±1.1), and weakly crystallized glasses of feldspathic composition, merillite and chrome spinel. The data obtained made it possible to estimate the degree of terrestrial weathering of the meteorite as W0 and the stage of impact metamorphism (S1-2), which suggests good preservation of the meteorite material. The composition of olivine and chrome spinel, determined using the EPMA method, was used to estimate the peak temperature of thermal metamorphism at 720°C, which falls within the temperature range (670–740°C) characteristic of petrological type 5 chondrites. The presence of high-Ca pyroxenes, large grains of Ca–Na–Mg phosphates and chromite-pigeonite aggregates in the meteorite matrix indicate prolonged heating of the material.
Keywords
About the authors
K. G. Sukhanova
Institute of Precambrian Geology and Geochronology Russian Academy of Sciences
Author for correspondence.
Email: cris.suhanova92@yandex.ru
Russian Federation, St. Petersburg
A. B. Kuznetsov
Institute of Precambrian Geology and Geochronology Russian Academy of Sciences
Email: cris.suhanova92@yandex.ru
Corresponding Member of the RAS
Russian Federation, St. PetersburgS. G. Skublov
Institute of Precambrian Geology and Geochronology Russian Academy of Sciences; Saint-Petersburg Mining University
Email: cris.suhanova92@yandex.ru
Russian Federation, St. Petersburg; St. Petersburg
References
- Гуськова Е. Г. Магнитные свойства метеоритов: Метеориты в лаборатории. Л.: Наука, 1972. 108 c.
- Заварицкий А. Н. О структуре кристаллических хондритов // Метеоритика. 1948. С. 50–70.
- Левский Л. К. Новые данные по содержанию изотопов инертных газов каменных метеоритов // Метеоритика. 1972. С. 149–150.
- Маракушев А., Зиновьева Н., Грановский Л. Генетические типы минералов ультравысокого давления в метеоритах // Доклады Академии наук. 2007. Т. 417. С. 673–676.
- Оболонская Э. В., Попова Е. Е. Метеорит Бородино // Русская история. 2012. С. 95–96.
- Симашко Ю. И. Падение двух метеоритов в исторические эпохи 1704 г. близ Дерпта и 1812 г. с. Бородино. СПб.: Тип. А. С. Суворина, 1892. [2], 8 с.; 19 c.
- Суханова К., Кузнецов А., Галанкина О. Особенности кристаллизации оливина в обыкновенных хондритах (метеорит Саратов): геохимия редких и редкоземельных элементов // Записки Горного института. 2022. Т. 254. С. 149–157.
- Суханова К. Г., Кузнецов А. Б., Скублов С. Г. Геохимические особенности хондр метеорита Орловка (Н5) как свидетельство плавления минералов-прекурсоров // Доклады Академии наук. Науки о Земле. 2022. Т. 504. С. 28–33.
- Трофимов А. В. Изотопный состав углерода метеоритов // Метеоритика. 1950. С. 127–133.
- Харитонова В. Я. Химический состав каменных метеоритов Бородино, Лаврентьевка, Alfianello и Nardoo II // Метеоритика. 1968. С. 138–141.
- Aleon J., Aleon-Toppani A., Platevoet B., Bardintzeff J. M., McKeegan K. D., Brisset F. Alkali magmatism on a carbonaceous chondrite planetesimal // PNAS. 2020. V. 117. P. 8353–8359.
- Britt D. T., Pieters C. M. Black ordinary chondrites: An analysis of abundance and fall frequency // Meteoritics. 1991. V. 26. P. 279–285.
- Graf T., Marti K. Collisional history of H chondrites // Journal of Geophysical Research. 1995. V. 100. P. 21247–21263.
- Ivanova M. A., Nazarov M. A. History of the meteorite collection of the Russian Academy of Sciences // Geological Society, London, Special Publications. 2006. V. 256. P. 219–236.
- Kashkarov L. L., Korotkova N. N., Kalinina G. V. Some general characteristics of the early radiation-thermal history of carbonaceous and ordinary chondrite matter on data of track studies // Lunar and Planetary Science Conference. 1994. V. 25. P. 671–672.
- Mason B. Olivine composition in chondrite // Geochimica et Cosmochimica Acta. 1963. V. 27. P. 1011–1023.
- Stöffler D., Keil K. Shock metamorphism of ordinary chondrites // Geochimica et Cosmochimica Acta. 1991. V. 55. P. 3845–3867.
- Wlotzka F. A weathering scale for the ordinary chondrites // Meteoritics. 1993. V. 28. P. 460.
- Wlotzka F. Cr spinel and chromite as petrogenetic indicators in ordinary chondrites: Equilibration temperatures of petrologic types 3.7 to 6. // Meteoritics & Planetary Science. 2005. V. 40. P. 1673–1702.
- Wolf S. F., Wang M.-S., Dodd R. T., Lipschutz M. E. Chemical studies of H chondrites 8. On contemporary meteoroid streams // Journal of Geophysical Research: Planets. 1997. V. 102. P. 9273–9288.
Supplementary files
