On the structure of temperature pulsations near the surface under convective conditions
- Authors: Malinovskaya Е.A.1, Chhetiani O.G.1, Azizyan V.G.1
-
Affiliations:
- A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
- Issue: Vol 516, No 1 (2024)
- Pages: 446-454
- Section: ATMOSPHERIC AND HYDROSPHERIC PHYSICS
- Submitted: 31.01.2025
- Published: 18.12.2024
- URL: https://edgccjournal.org/2686-7397/article/view/650072
- DOI: https://doi.org/10.31857/S2686739724050162
- ID: 650072
Cite item
Abstract
Measurements of temperature pulsations under conditions of summer hot weather in the near-surface air layer in a deserted area were carried out using wire sensors distributed spatially and in height with a recording frequency of 1000 Hz. For the power spectra, slopes with values from “–1” to “–1.35” (scale: 0.2–2 m) are noted for frequencies below the “–5/3” inertial interval region. At frequencies above the inertial interval (scales: 0.01-0.1 m), slopes range from “–4.2” to “–5.8”. In some episodes at frequencies less than 0.1–0.3 Hz, slopes from “–0.2” to “–0.85” are observed. Based on the equations of motion in the Boussinesq approximation, we obtained estimates for the observed slopes of the spectra: “–1”, “–4/3”, and “–7/3”, characteristic of a thermally stratified medium. Using a qualitative (visual) method at different signal averaging times (1, 10, 200 s), the occurrence of thermoconvective structures of “ramps” with a temporal length of 0.3–1 s was revealed, which constitute ramps with a length of 1–10 s at larger averaging.
About the authors
Е. A. Malinovskaya
A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
Author for correspondence.
Email: elen_am@inbox.ru
Russian Federation, Moscow
O. G. Chhetiani
A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
Email: elen_am@inbox.ru
Russian Federation, Moscow
V. G. Azizyan
A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
Email: elen_am@inbox.ru
Russian Federation, Moscow
References
- Krishnamurti R., Howard L. N. Large-scale flow generation in turbulent convection // Proceedings of the National Academy of Sciences. 1981. V. 78(4). P. 1981–1985.
- Малиновская Е. А., Чхетиани О. Г., Голицын Г. С., Лебедев В. А. О вертикальном распределении пылевого аэрозоля в условиях слабых и умеренных ветров // Доклады РАН. Науки о Земле. 2023. Т. 509. Вып. 2. С. 250–258.
- Frisch A. S., Businger J. A. A study of convective elements in the atmospheric surface layer // Boundary-Layer Meteorology. 1973. V. 3(3). P. 301–328.
- Koprov B. M. et al. Statistics of air temperature spatial variability in the atmospheric surface layer // Boundary-layer meteorology. 1998. V. 88(3). P. 399–423.
- Taylor R. J. Thermal structures in the lowest layers of the atmosphere // Australian Journal of Physics. 1958. V. 11(2). P. 168–176.
- Chen W. et al. Coherent eddies and temperature structure functions for three contrasting surfaces. Part I: Ramp model with finite microfront time // Boundary-Layer Meteorology. 1997. V. 84. P. 99–124.
- Phong-Anant D., Chambers A. J., Antonia R. A. I. Vertical and horizontal spatial coherence of temperature fluctuations in the atmospheric surface layer / Australasian Conference on Hydraulics and Fluid Mechanics. Barton, ACT, 1980. V. 7. P. 432–434.
- Кадер Б. А. Трехслойная структура неустойчиво стратифицированного приземного слоя атмосферы // Изв. АН СССР. Физика атмосферы и океана. 1988. Т. 28. № 12. С 1235–1250.
- Vindel J. M., Yagüe C. Intermittency of turbulence in the atmospheric boundary layer: Scaling exponents and stratification influence // Boundary-layer meteorology. 2011. V. 140. P. 73–85.
- McNaughton K. G., Clement R. J., Moncrieff J. B. Scaling properties of velocity and temperature spectra above the surface friction layer in a convective atmospheric boundary layer // Nonlinear Processes in Geophysics. 2007. V. 14(3). P. 257–271.
- Горчаков Г. И., Чхетиани О. Г., Карпов А. В., Гущин Р. А., Даценко О. И. Турбулентные потоки аэрозоля и тепла на опустыненной территории при всплесковой эмиссии пылевого аэрозоля // Доклады РАН. Науки о Земле. 2024. (в печати).
- Martens C. P. Spectrum of turbulence with temperature gradient (in the atmosphere) // Journal of Physics A. 1976. V. 9–10. P. 1751–1770.
- Гисина Ф. А. Расчет основных спектральных характеристик турбулентности в термически стратифицированной атмосфере // Труды Ленинградского гидрометеорологического института. 1968. Вып. 34. С. 49–58.
- Сазонтов А. Г. Соотношение подобия и спектры турбулентности в стратифицированной среде // Изв. АН СССР. Физика атмосферы и океана. 1979. Т. 15. № 8. С. 820–828.
- Chkhetiani O. G., Gledzer E. B., Artamonova M. S., Iordanskii M. A. Dust resuspension under weak wind conditions: direct observations and model // Atm. Chemistry and Physics. 2012. V. 12. P. 5147–5162.
- Чхетиани О. Г., Вазаева Н. В. Об алгебраических возмущениях в атмосферном пограничном слое // Известия Российской академии наук. Физика атмосферы и океана. 2019. Т. 55. № 5. С. 62–75.
- Dillon T. M., Caldwell D. R. The Batchelor spectrum and dissipation in the upper ocean // Journal of Geophysical Research: Oceans. 1980. V. 85. С. 4. P. 1910–1916.
- Young G. S. Convection in the atmospheric boundary layer // Earth-Science Reviews. 1988. V. 25(3). P. 179–198.
- Kao S. K. Wavenumber-frequency spectra of temperature in the free atmosphere // Journal of Atmospheric Sciences. 1970. V. 27(7). P. 1000–1007.
- Гисина Ф. А. О влиянии градиентов средней скорости и температуры на спектральные характеристики турбулентности // Известия АН СССР. Физика атмосферы и океана. 1966. Т. 2. № 8. С. 804–813.
Supplementary files
