Age, composition and paleomagnetism of dolerite-gabbro dolerite intrusions of the Anabar massif western slope: on the issue of the Vendian magmatism isolation in the region

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

According to the Anabar massif western slope geological survey in the Kotuy River middle reaches, the Kotuy intrusive complex was identified. It represented by dolerite-gabbrodolerite sills and dikes of Vendian age (556 ± 28 Ma). A number of sills are characterized by 30–80 m thickness, and dikes often have a length of the top tens km. The complex distribution area is the first hundreds of km2. At the same time, the geodynamic reasons for the formation extensive intrusive bodies in the north of Siberia in the Vendian are not clear. We present new geochronological, geochemical and paleomagnetic data indicating that at least part of the Kotuy magmatic complex intrusions in the middle reaches of the Kotuy River should be attributed to the ~1500 Ma Kengede magmatic complex (Kuonamka large magmatic province). In this light, the question arises about the correctness of the allocation of the stage of intrusive magmatism of the Vendian age on the western slope of the Anabar massif.

Full Text

Restricted Access

About the authors

A. M. Pasenko

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Author for correspondence.
Email: a.m.pasenko@iperas.ru
Russian Federation, Moscow

S. V. Malyshev

St. Petersburg State University

Email: a.m.pasenko@iperas.ru
Russian Federation, St. Petersburg

A. A. Pazukhina

Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences; St. Petersburg State University

Email: a.m.pasenko@iperas.ru
Russian Federation, Moscow; St. Petersburg

A. D. Savel’ev

St. Petersburg State University; Karpinsky Russian Geological Research Institute

Email: a.m.pasenko@iperas.ru
Russian Federation, St. Petersburg; St. Petersburg

G. V. Lipenkov

Karpinsky Russian Geological Research Institute

Email: a.m.pasenko@iperas.ru
Russian Federation, St. Petersburg

K. R. Chemberlain

University of Wyoming

Email: a.m.pasenko@iperas.ru

Department of Geology and Geophysics

United States, Laramie

References

  1. Merdith A. S., Collins A. S., Williams S. E., Pisarevsky S., Foden J. D., Archibald D. B., Blades M. L., Alessio B. L., Armistead S., Plavsa D., Clark C., Müller R. D. A full-plate global reconstruction of the Neoproterozoic // Gondwana Research. 2017. https://doi.org/10.1016/j.gr.2017.04.001
  2. Priyatkina N., Collin, W.J., Khudoley A., Zastrozhnov D., Ershova V., Chamberlain K., Shatsillo A., Proskurnin V. The Proterozoic evolution of northern Siberian Craton margin: a comparison of U–Pb–Hf signatures from sedimentary units of the Taimyr orogenic belt and the Siberian platform // International Geology Review. 2017. 59. 1632–1656. https://doi.org/10.1080/00206814.2017.1289341
  3. Malyshev S. V., Pasenko A. M., Khudoley A. K., Ivanov A. V., Priyatkina N. S., Pazukhina A. A., Marfin A. E., DuFrane A.S., Sharygin I. S., Gladkochub E. A. What is the age of the Udzha paleorift?: U-Pb age of detrital zircons from Udzha basin terrigenous succession, northern Siberia. Vestnik of Saint Petersburg University // Earth Sciences. 2022. 67, 548–567. https://doi.org/10.21638/spbu07.2022.401
  4. Липенков Г. В., Мащак М. С., Кириченко В. Т., Ларичев А. И. и др. Государственная геологическая карта Российской Федерации. Масштаб 1: 1 000 000 (третье поколение). Серия Анабаро-Вилюйская. Лист R-48 – Хатанга. Объяснительная записка. 2015.
  5. Прокопьев А. В., Худолей А. К., Королева О. В., Казакова Г. Г., Лохов Д. К., Малышев С. В., Зайцев А. И., Роев С. П., Сергеев С. А., Бережная Н. Г., Васильев Д. А. Раннекембрийский бимодальный магматизм на северо-востоке Сибирского кратона // Геология и геофизика. 2016. 57(1). С. 199–224.
  6. Трофимов В. Р. К вопросу о позднепротерозойских трапповых интрузиях Западного Прианабарья / В сборнике: Новые данные по стратиграфии позднего докембрия Сибири: Сб. Науч. Тр. АН СССР. Сиб. отд-ние, Ин-т геологии и геофизики, Новосибирск. 1982.
  7. Барсков Е. А., Кичкина С. С. и др. Отчет о групповой геологической съемке масштаба 1:200000 и поисках месторождений полезных ископаемых в бассейнах средних течений рек Котуй, Маймеча, Чангада, верхних течений рек Анабар, Кукусунда, в бассейнах рек Тукалаан и Аганыли. Листы R-47-XXIII, XXIV, XXIX, R-48-XIX, XXV, XXVI, XXVII, XXVIII, XXIX, XXX. Аэрогеология, Москва. 1976.
  8. Ernst R. E., Okrugin A. V.V., Veselovskiy R. V.V., Kamo S. L.L., Hamilton M. A.A., Pavlov V., Soderlund U., Chamberlain K. R.R., Rogers C. The 1501 Ma Kuonamka Large Igneous Province of northern Siberia: U-Pb geochronology, geochemistry, and links with coeval magmatism on other crustal blocks // Russian Geology and Geophysics. 2016. 57. 653–671. https://doi.org/10.1016/j.rgg.2016.01.015
  9. Горохов И. М., Кузнецов А. Б., Семихатов М. А., Васильева И. М., Ризванова Н. Г., Липенков Г. В., Дубинина Е. О. Раннерифейская билляхская серия Анабарского поднятия, Северная Сибирь: изотопная CO геохимия и Pb-Pb возраст доломитов // Стратиграфия. Геологическая корреляция. 2019. 27(5). С. 19–35.
  10. Panteeva S. V., Gladkochoub D. P., Donskaya T. V., Markova V. V., Sandimirova G. P. Determination of 24 trace elements in felsic rocks by inductively coupled plasma mass spectrometry after lithium metaborate fusion // Spectrochimica Acta Part B: Atomic Spectroscopy, Intersibgeochem. 2003. 01. 58. 341–350. https://doi.org/10.1016/S0584-8547(02)00151-9
  11. Söderlund U., Johansson L. A simple way to extract baddeleyite ( ZrO 2 ): Simple way to extract baddeleyite // Geochem.-Geophys.-Geosyst. 2002. 3. 1 of 7–7 7. https://doi.org/10.1029/2001GC000212
  12. Ludwig K. R. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel, Revised August 27, 2003. ed, Special publication / Berkeley Geochronology Center. Kenneth R. Ludwig, Berkeley CA.
  13. Ludwig K. R. PBDAT for MS-DOS; a computer program for IBM-PC compatibles for processing raw Pb-U-Th isotope data, version 1.00a (No. 88–542), Open-File Report. United States Geological Survey. 1988. https://doi.org/10.3133/ofr88542
  14. Шацилло А. В., Рудько С. В., Латышева И. В., Рудько Д. В., Федюкин И. В., Паверман В. И., Кузнецов Н. Б. Гипотеза “блуждающего экваториального диполя”: к проблеме низкоширотных оледенений и конфигурации геомагнитного поля позднего докембрия // Физика Земли. 2020. С. 113– 134. https://doi.org/10.31857/s0002333720060083
  15. Evans D. A.D., Veselovsky R. V., Petrov P. Yu., Shatsillo A. V., Pavlov V. E. Paleomagnetism of Mesoproterozoic margins of the Anabar Shield: A hypothesized billion-year partnership of Siberia and northern Laurentia // Precambrian Research. 2016. 281. 639–655. https://doi.org/10.1016/j.precamres.2016.06.017
  16. Sun S.-S., McDonough W. F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications. 1989. 42. 313–345.
  17. Pearce J. A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust // Lithos. 2008. 100. 14–48. https://doi.org/10.1016/j.lithos.2007.06.016
  18. Gale A., Dalton C. A., Langmuir C. H., Su Y., Schilling J.-G. The mean composition of ocean ridge basalts // Geochemistry, Geophysics, Geosystems. 2013. 14, 489–518. https://doi.org/10.1029/2012GC004334
  19. Томшин М. Д., Эрнст Р. Е., Седерлунд У., Округин А. В. Кенгединский мафический дайковый рой и расширение Куонамской крупной изверженной провинции (1500 млн лет) северной Сибири // Геодинамика и тектонофизика. 2023;14(4). https://doi.org/10.5800/GT-2023-14-4-0707

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Map-scheme of the geological structure of the western slope of the Anabar massif (after [6]) (a); schematic stratigraphic column of the western slope of the Anabar massif (b) and concordia for 4 IDTIMS analyses of baddeleyite grains of the Orevun sill (c). 1 - Ordovician-Silurian; 2 - Cambrian; 3 - Starorechenskaya suite Vendian; 4 - Billyakh series; 5 - Mukun series; 6 - formations of the Archean-Proterozoic basement; 7 - intrusive bodies of the Kotuy igneous complex; 8 - intrusive bodies of the Early Triassic igneous complex; 9 - points of sampling paleomagnetic (black) and geochronological (yellow) samples; 10 - basement rocks; 11 - conglomerates, gravelites; 12 – siltstones, argillites; 13 – sandstones; 14 – dolomites; 15 – stromatolitic limestones, dolomites; 16 – limestones; 17 – intrusive rocks of basic composition; 18 – effusive rocks of basic composition. * – review of isotopic datings (see [9]).

Download (104KB)
3. Fig. 2. Results of petropalaeomagnetic studies of intrusive bodies of the Kotuy complex. Results of stepwise temperature cleaning: a) Zijderveld diagrams; b) stereograms of the direction of the EOH vector; c) micrographs in a scanning electron microscope of the structures of high-temperature decomposition of titanomagnetite crystals; d) graph of the dependence of magnetic susceptibility on temperature; d) stereogram of magnetization directions for the bodies of the Kotuy complex, the Kuonamskaya large igneous province and the Vendian rocks of the Siberian platform [14]; e) Day-Dunlop diagram.

Download (104KB)
4. Fig. 3. Geochemical characteristics of the rocks of the Kotuy complex of the Kotuy River, the Kotuykan River (according to data from [4]) and the Kuonamskaya CMP [8]. a) Multi-element diagram with element concentrations normalized to the primitive mantle [16]; b) Th/Yb–Nb/Yb diagram [17].

Download (32KB)

Copyright (c) 2024 Russian Academy of Sciences