Ilei fluorite-phenakite ore phenomenon (Eastern Sayan): contribution of Devonian riftogenic magmatism to formation of Eastern Sayan rare metal metallogenic zone

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Within the Altai-Sayan fold region, covering the territory of the East Tuva Highlands and Eastern Sayan, one of the richest rare metal provinces of Russia is concentrated. Deposits of rare metals, elements and lands formed within its limits have different ages and arose in different geotectonic environments and in different metallogenic eras. They are associated with the introduction of alkaline rock masses that are common along the fault system between the caledonids of the Altai-Sayan fold region and the Tuvino-Mongolian Precambrian superterrane. Their distribution range is also defined as the East Sayan rare metal metallogenic zone (VSMZ), which arose due to the impact of mantle plumes on the southwestern framing of the Siberian platform. Geochemical and geochronological studies were carried out at the Ilei fluorite-phenakite ore show. Ore development resulted from the introduction of Ognite complex granitoids into the limestones of the Mongoshin formation, which became a geochemical barrier to the igneous fluid enriched with fluorine and Be. Geochronological Rb-Sr and Ar-Ar studies have shown that subalkaline granites, as well as acidic volcanites of the Ilean sequence, are of Middle Devonian age ~ 390 million years, which is consistent with age estimates for the rocks of the Ognite complex. Thus, the same age of magmatism and ore formation at the Ilei ore phenomenon indicates the contribution of Devonian magmatism to the formation of rare metal mineralization within the VSMZ.

Full Text

Restricted Access

About the authors

D. A. Lykhin

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Author for correspondence.
Email: lykhind@rambler.ru
Russian Federation, Moscow

A. A. Vorontsov

A.P. Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences

Email: lykhind@rambler.ru
Russian Federation, Irkutsk

V. V. Yarmolyuk

Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of Sciences

Email: lykhind@rambler.ru

Academician of the RAS

Russian Federation, Moscow

References

  1. Добрецов Н. Л., Беличенко В. Г., Бутов Ю. П. и др. Геология и рудоносность Восточного Саяна. Новосибирск: Наука. 1989. 127 с. http://www.ipgg.sbras.ru/ru/science/publications/monography-geologiya-i-rudonosnost-vostochnogo-sayan-1989-010464
  2. Гордиенко И. В., Рошектаев П. А., Гороховский Д. В. Окинский рудный район Восточного Саяна: геологическое строение, структурно-металлогеническое районирование, генетические типы рудных месторождений, геодинамические условия их образования и перспективы освоения // ГРМ. 2016. Т. 58. № 5. С. 405–429. https://uchimsya.com/a/ns2O0AsW
  3. Yarmolyuk V. V., Kuzmin M. I., Ernst R. E. Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt // Journal of Asian Earth Sciences. 2014. V. 93. P. 158–179. https://elibrary.ru/uezicf
  4. Ярмолюк В. В., Лыхин Д. А., Козловский А. М. и др. Состав, источники и механизмы формирования редкометальных гранитоидов позднепалеозойской Восточно-Саянской зоны щелочного магматизма (на примере массива Улан-Тологой) // Петрология. 2016. Т. 24. № 5. С. 515–536. https://doi.org/10.7868/S0869590316050083
  5. Лыхин Д. А., Ярмолюк В. В., Воронцов А. А. Возраст, состав и источники пород и руд Окуневского флюорит-лейкофанового месторождения (Западный Саян): К оценке вклада магматизма в формирование рудной минерализации // ГРМ. 2019. Т. 61. № 5. С. 37– 61. https://elibrary.ru/item.asp?id=41332166
  6. Владыкин Н. В., Алымова Н. В., Перфильев В. В. Геохимические особенности редкометальных гранитов Зашихинского массива, Восточный Саян // Петрология. 2016. Т. 24. № 5. С. 554–568. https://doi.org/10.7868/S086959031605006X
  7. Воронцов А. А., Сандимиров И. В. Девонский магматизм хребта Кропоткина (Восточный Саян) и источники базальтов: геологические, геохимические и изотопные Sr-Nd данные // Геология и геофизика. 2010. Т. 51. № 8. С. 1073–7087. https://elibrary.ru/item.asp?id=15168156
  8. Лыхин Д. А., Ярмолюк В. В., Сальникова Е. Б. и др. U-Pb возраст редкометальных щелочных гранитов месторождения Снежное: к оценке возрастной однородности гранитоидов огнитского комплекса (Восточный Саян) // Докл. РАН. Науки о Земле. 2022. Т. 506. № 2. С. 148–157. https://elibrary.ru/item.asp?id=49421256
  9. Генетические типы гидротермальных месторождений бериллия / Гинзбург А. И., Заболотная Н. П., Куприянова И. И. и др. М.: Недра. 1975. https://search.rsl.ru/ru/record/01006918784
  10. Куприянова И. И., Шпанов Е. П. Бериллиевые месторождения России // М.: ВИМС. 2011. 353 с. https://search.rsl.ru/ru/record/01005391656
  11. Sun S.S., McDonough W. F. Chemical and isotopic systematic of oceanic basalts: implications for mantel composition and processes: magmatism in ocean basalts / Eds. A. D. Saunders, M. J. Norry. Geolog. Soc. London Spec. Publ. 1989. V. 42. P. 313–346. doi: 10.1144/GSL.SP.1989.042.01.19.
  12. Pearce Y. A., Harris N. B.W., Tindle A. G. Trace element discrimination diagram for the tectonic interpretation of granitic rock // J. Petrol. 1984. V. 70. P. 956–983. https://doi.org/10.1093/petrology/25.4.956
  13. Саватенков В. М., Морозова И. М., Левский Л. К. Поведение изотопных систем (Sm-Nd, Rb-Sr, K-Ar, U-Pb) при щелочном метасоматозе // Геохимия. 2004. № 10. С. 1027–1049. https://doi.org/10.1093/petrology/25.4.956
  14. Котов А. Б., Ковач В. П., Сальникова Е. Б. и др. Этапы формирования континентальной коры центральной части Алданской гранулито-гнейсовой области: U-Pb и Sm-Nd изотопные данные по гранитоидам // Петрология. 1995. Т. 1. № 1. С. 97–108. https://elibrary.ru/gkqfgr
  15. York D. Least-sguares fitting of a straight line. Can // J. Physics. 1966. V. 44. P. 1079–1086 https://studylib.net/doc/18489580/york-d.-least- squares-fitting-of-a-straight-line
  16. Steiger R. H., Jager E. Subcomission of Geochronology: convension of the use of decay constants in geo- and cosmochronology // Earth Planet. Sci. Lett. 1977. V. 36. № . 2. P. 359–362. https://doi.org/10.1016/0012-821X(77)90060-7
  17. Травин А. В., Юдин Д. С., Владимиров А. Г. и др. Термохронология Чернорудской гранулитовой зоны (Ольхонский регион, Западное Прибайкалье) // Геохимия. 2009. Т. 11. С. 1181–1199. https://elibrary.ru/item.asp?id=12951863
  18. Государственная геологическая карта Российской федерации масштаба 1:200000 N-47-XXIX (Алаг-Шулун). Объяснительная записка. ФГБУ “ВСЕГЕИ” Москва. 2019. https://www.geokniga.org/sites/geokniga/files/map comments/n-47-xxix-alag-shulun-gosudarstvennaya-geologicheskaya-karta-rossiyskoy-fed.pdf
  19. Воронцов А. А., Ярмолюк В. В., Сандимирова Г. П. Базальт-трахириолит-комендитовая ассоциация хребта Кропоткина (Восточный Саян) и проблема девонского рифтогенеза в южном обрамлении Сибирской платформы // ДАН. 2008. Т. 423. № 2. С. 222–227. https://elibrary.ru/item.asp?id=11602255

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme of distribution of Early Devonian volcanoplutonic associations in the Kropotkin Ridge area according to [7]. 1 – loose sediments; 2 – Quaternary basalts; 3–5 – Early Devonian igneous associations: 3 – trachyrhyolite-comendite, 4 – basaltic and bimodal basalt-trachyrhyolite-comendite, 5 – subalkaline and alkaline granites and syenites; 6 – pre-Devonian gneissogranites, gabbroids, granodiorites and plagiogranites; 7 – faults; 8 – position of the Snezhnoye deposit (1) and the Ileyskoye ore occurrence (2); 9–14 – conditional for insertion: 9 – volcanic depressions and grabens, 10 – area of ​​distribution of mafic intrusions at the base of the Bodaibo trough, 11 – Siberian platform, 12 – territory of the paleocontinent, 13 – Paleoasian ocean, 14 – supposed contours of the Devonian rift system. VRS – Vilyui rift system, ASO – Altai-Sayan rift region. Grabens and depressions: Mn – Minusinsk, Tv – Tuva, Dzh – Dzhida-Khasuritsky, Toch – Tochersky, Bd – Bodaibo. The territory of the Kropotkin Ridge is highlighted with a rectangular contour.

Download (98KB)
3. Fig. 2. Structure of the Ilei ore occurrence. a – photograph, dotted line shows outcrops of limestones of the Mongoshinskaya suite; b – geological plan of the Ilei ore occurrence. 1 – glacial deposits; 2 – limestones of the Upper Proterozoic Mongoshinskaya suite; 3–8 – Devonian volcano-plutonic complex: 3–6 – Ognitsky complex: 3 – dikes: a – granite-porphyry, quartz porphyry, b – altered porphyrites, 4 – fine-grained leucocratic granites, 5 – medium- and coarse-grained porphyry-like leucocratic granosyenites and quartz syenites, 6 – leucocratic syenite-porphyry; 7–8 – Ileiskaya sequence: 7 – felsites, 8 – lava breccias; 9 – fluorite veins: a – mapped, b – assumed; 10 – faults; 11 – ore body numbers.

Download (229KB)
4. Fig. 3. a – vein of massive ores with sharp contacts from the central section of the ore occurrence; b – vein-disseminated ores from the western section.

Download (97KB)
5. Fig. 4. Graphs of the normalized distribution of rare and rare-metal elements in igneous rocks and ores of the Ilei ore occurrence according to [11]. Granitoids are solid lines; volcanics of the Ilei formation are dotted lines; ores are highlighted in gray.

Download (33KB)
6. Fig. 5. Rb‒Sr isochron diagram for volcanics of the Ilei sequence. Ar‒Ar geochronological studies were carried out on arfvedsonite isolated from subalkaline granites. The study was carried out at the Institute of Geology and Mineralogy SB RAS using the technique described in [17]. The plateau, constructed in three steps with 43.8% of isolated 39Ar, is characterized by an age value of 381±5 Ma (Table 3, Fig. 6). On the isochron diagram for linear regression by 4 points, the age value calculated was 387±6 Ma, which is consistent with the age of the plateau (Fig. 6 b). Thus, the value 387±6 Ma can be considered to correspond to the time of closure of the amphibole isotope system and the time of formation of subalkaline granites.

Download (12KB)
7. Fig. 6. Results of Ar‒Ar studies of arfvedsonite from subalkaline granites of the Ileyskoye ore occurrence. a – studies of arfvedsonite using the step-heating method; b – isochron diagram for linear regression, constructed using four points.

Download (23KB)

Copyright (c) 2024 Russian Academy of Sciences