New evidence for organic nature of carbonaceous substance in Archean banded iron fomation of the Kostomuksha greenstone belt, Karelian Craton, Russia
- Autores: Vysotskiy S.V.1, Khanchuk A.I.1, Velivetskaya T.A.1, Ignat’ev A.V.1, Aseeva A.V.1, Nesterova N.S.1, Karpenko A.A.2, Ruslan A.V.1
-
Afiliações:
- Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences
- A. V. Zhirmunskiy National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences
- Edição: Volume 514, Nº 2 (2024)
- Páginas: 263-269
- Seção: GEOCHEMISTRY
- ##submission.dateSubmitted##: 31.01.2025
- ##submission.datePublished##: 12.09.2024
- URL: https://edgccjournal.org/2686-7397/article/view/650086
- DOI: https://doi.org/10.31857/S2686739724020091
- ID: 650086
Citar
Resumo
The paper considers the results of a study of particles of carbonaceous substance and sulfur isotopes of associated sulfides in metapelites of the Neoarchean banded iron formation (BIF) of the Kostomuksha greenstone belt of Karelia (Karelian Craton of the Fennoscandian Shield). According to the petrographic observations, the carbonaceous matter occurs within and between silicate minerals’ grains, inside sulfides or at the grain boundaries, separating sulfide crystals from biotite or amphibole. Scanning electron (SEM) and atomic force (AFM) microscopy revealed the several types of the carbonaceous material varying in structure and carbon content. Raman spectra approved both well-structured graphite and weakly structured graphite (kerogen) components of the carbonaceous substance. The isotopic composition of total organic carbon is typical for biogenic processes. The obtained δ13Corg value within the range of –27,9– –30,6‰ is consistent with carbon fixation by photo- or chemoautotrophs. The sulfur isotopy of the associated sulfides is marked by positive Δ33S anomaly (up to +0.94‰) and negative δ34S values (–2.06‰ ─ –4.1‰). Positive Δ33S values indicate sulfur genetic association with photochemical elemental sulfur (S8) from the atmosphere, while negative δ34S values reflect isotope fractionation in bacterial-mediated processes. Based on these observations, we believe that the initial carbonaceous substance has mainly organic origin.
Palavras-chave
Texto integral

Sobre autores
S. Vysotskiy
Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: dannaukiozemle@yandex.ru
Rússia, Vladivostok
A. Khanchuk
Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences
Email: dannaukiozemle@yandex.ru
Academician of the RAS
Rússia, VladivostokT. Velivetskaya
Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences
Email: dannaukiozemle@yandex.ru
Rússia, Vladivostok
A. Ignat’ev
Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences
Email: dannaukiozemle@yandex.ru
Rússia, Vladivostok
A. Aseeva
Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences
Email: dannaukiozemle@yandex.ru
Rússia, Vladivostok
N. Nesterova
Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences
Email: dannaukiozemle@yandex.ru
Rússia, Vladivostok
A. Karpenko
A. V. Zhirmunskiy National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences
Email: dannaukiozemle@yandex.ru
Институт Биологии Моря
Rússia, VladivostokA. Ruslan
Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences
Email: dannaukiozemle@yandex.ru
Rússia, Vladivostok
Bibliografia
- Konhauser K. O., Planavsky N. J., Hardisty D. S., et al. Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history // Earth-Science Reviews. 2017. V. 172. P. 140–177. https:// doi. org/ 10. 1016/j. earscirev. 2017. 06. 012.
- Астафьева М. М., Фелицын С. Б., Алфимова Н. А. Бактериальная палеонтология неоархейских полосчатых железистых кварцитов Карелии и Кольского полуострова // Палеонтологический журнал. 2017. № 4. С. 93–102.
- Dodd M. S., Papineau D., et al. Widespread occurrences of variably crystalline 13C-depleted graphitic carbons in banded iron formations // Earth and Planetary Science Letters. 2019. V. 512. P. 163–174. https://doi.org/10.1016/j.epsl.2019.01.054
- Klein C. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins // Amer. Mineralogist. 2005. V. 90. P. 1473–1499.
- McMahon S., Anderson R. P., Saupe E. E., Briggs D. E.G. Experimental evidence that clay inhibits bacterial decomposers: Implications for preservation of organic fossils // Geology. 2016. V. 44. P. 867–870
- Sharman E. R., Taylor B. E., Minarik W. G., et al. Sulfur isotope and trace element data from ore sulfides in the Noranda district (Abitibi, Canada): Implications for volcanogenic massive sulfide deposit genesis // Mineralium Deposita. 2015. V. 50. P. 591‒606.
- Высоцкий С. В., Ханчук А. И., Веливецкая Т. А., Игнатьев А. В., Асеева А. В., Нестерова Н. С. Источники изотопов серы в сульфидах неоархейских железорудных месторождений Костомукшского зеленокаменного пояса Карелии (Россия). // Доклады Российской Академии наук. Науки о Земле. 2023. Т. 510. № 2. С. 20–26
- Слабунов А. И., Нестерова Н. С., Егоров А. В., Кулешевич Л. В., Кевлич В. И. Геохимия, геохронология цирконов и возраст архейской железорудной толщи Костомукшского зеленокаменного пояса Карельского кратона Фенноскандинавского Щита // Геохимия. 2021. T. 66. № 4. С. 291‒307. doi: 10.31857/S0016752521040063
- Слабунов А. И., Светов С. А., Степанова А. В., Медведев П. В., Полин А. К. Новая тектоническая карта Карелии: принципы построения и их реализация // Труды Карельского научного центра РАН. 2022. № 5. С. 132–138. doi: 10.17076/geo1690
- Костомукшский рудный район (геология, глубинное строение и минерагения). Отв. ред. Горьковец В. Я., Шаров Н. В. Петрозаводск. 2015. 322 c.
- Velivetskaya T., Ignatyev A., Reize M., Kiyashko S. Open tube combustion method of organic samples for stable carbon isotope analysis // Rapid communications in mass spectrometry. 2007. RCM. 21. 2451-5. 10.1002/rcm.3112.
- Ignatiev A. V., Velivetskaya T. A., Budnitskiy S. Y., Yakovenko V. V., Vysotskiy S. V., Levitskii V. I. Precision analysis of multisulfur isotopes in sulfides by femtosecond laser ablation GC–IRMS at high spatial resolution // Chemical Geology. V. 493. P. 316–326. doi: 10.1016/j.chemgeo.2018.06.006
- Ferrari A. S., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon // Phys. Rev. 2000. B61. P. 14095–14107
- Schidlowski M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept // Precambrian Research. 2001. V. 106. № 1‒2. P. 117–134. https:// doi.o rg/ 10. 1016/S0301-9268(00) 00128-5.
- Farquhar J., Wing B. A., McKeegan K.D., Harris J. W., Cartigny P., Thiemens M. H. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth // Science. 2002. V. 298. P. 2369–2372
- Ono S., Eigenbrode J. L., Pavlov A. A., Kharecha P., Rumble III D., Kasting J. F., Freeman K. H. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia // Earth and Planetary Science Letters. 2003. V. 213. № 1‒2. P. 15‒30.
- Farquhar J., Cliff J., Zerkle A. L., Harms B. Pathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes // PNAS. 2013. V. 110. P. 17638–17643.
- Leavitt W. D., Halevy I., Bradley A. S., Johnston D. T. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record // PNAS. 2013. V. 110. P. 11244–11249.
Arquivos suplementares
