New evidence for organic nature of carbonaceous substance in Archean banded iron fomation of the Kostomuksha greenstone belt, Karelian Craton, Russia

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper considers the results of a study of particles of carbonaceous substance and sulfur isotopes of associated sulfides in metapelites of the Neoarchean banded iron formation (BIF) of the Kostomuksha greenstone belt of Karelia (Karelian Craton of the Fennoscandian Shield). According to the petrographic observations, the carbonaceous matter occurs within and between silicate minerals’ grains, inside sulfides or at the grain boundaries, separating sulfide crystals from biotite or amphibole. Scanning electron (SEM) and atomic force (AFM) microscopy revealed the several types of the carbonaceous material varying in structure and carbon content. Raman spectra approved both well-structured graphite and weakly structured graphite (kerogen) components of the carbonaceous substance. The isotopic composition of total organic carbon is typical for biogenic processes. The obtained δ13Corg value within the range of –27,9– –30,6‰ is consistent with carbon fixation by photo- or chemoautotrophs. The sulfur isotopy of the associated sulfides is marked by positive Δ33S anomaly (up to +0.94‰) and negative δ34S values (–2.06‰ ─ –4.1‰). Positive Δ33S values indicate sulfur genetic association with photochemical elemental sulfur (S8) from the atmosphere, while negative δ34S values reflect isotope fractionation in bacterial-mediated processes. Based on these observations, we believe that the initial carbonaceous substance has mainly organic origin.

Texto integral

Acesso é fechado

Sobre autores

S. Vysotskiy

Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: dannaukiozemle@yandex.ru
Rússia, Vladivostok

A. Khanchuk

Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences

Email: dannaukiozemle@yandex.ru

Academician of the RAS

Rússia, Vladivostok

T. Velivetskaya

Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences

Email: dannaukiozemle@yandex.ru
Rússia, Vladivostok

A. Ignat’ev

Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences

Email: dannaukiozemle@yandex.ru
Rússia, Vladivostok

A. Aseeva

Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences

Email: dannaukiozemle@yandex.ru
Rússia, Vladivostok

N. Nesterova

Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences

Email: dannaukiozemle@yandex.ru
Rússia, Vladivostok

A. Karpenko

A. V. Zhirmunskiy National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences

Email: dannaukiozemle@yandex.ru

Институт Биологии Моря 

Rússia, Vladivostok

A. Ruslan

Far East Geological Institute, Far Eastern Branch of the Russian Academy of Sciences

Email: dannaukiozemle@yandex.ru
Rússia, Vladivostok

Bibliografia

  1. Konhauser K. O., Planavsky N. J., Hardisty D. S., et al. Iron formations: A global record of Neoarchaean to Palaeoproterozoic environmental history // Earth-Science Reviews. 2017. V. 172. P. 140–177. https:// doi. org/ 10. 1016/j. earscirev. 2017. 06. 012.
  2. Астафьева М. М., Фелицын С. Б., Алфимова Н. А. Бактериальная палеонтология неоархейских полосчатых железистых кварцитов Карелии и Кольского полуострова // Палеонтологический журнал. 2017. № 4. С. 93–102.
  3. Dodd M. S., Papineau D., et al. Widespread occurrences of variably crystalline 13C-depleted graphitic carbons in banded iron formations // Earth and Planetary Science Letters. 2019. V. 512. P. 163–174. https://doi.org/10.1016/j.epsl.2019.01.054
  4. Klein C. Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins // Amer. Mineralogist. 2005. V. 90. P. 1473–1499.
  5. McMahon S., Anderson R. P., Saupe E. E., Briggs D. E.G. Experimental evidence that clay inhibits bacterial decomposers: Implications for preservation of organic fossils // Geology. 2016. V. 44. P. 867–870
  6. Sharman E. R., Taylor B. E., Minarik W. G., et al. Sulfur isotope and trace element data from ore sulfides in the Noranda district (Abitibi, Canada): Implications for volcanogenic massive sulfide deposit genesis // Mineralium Deposita. 2015. V. 50. P. 591‒606.
  7. Высоцкий С. В., Ханчук А. И., Веливецкая Т. А., Игнатьев А. В., Асеева А. В., Нестерова Н. С. Источники изотопов серы в сульфидах неоархейских железорудных месторождений Костомукшского зеленокаменного пояса Карелии (Россия). // Доклады Российской Академии наук. Науки о Земле. 2023. Т. 510. № 2. С. 20–26
  8. Слабунов А. И., Нестерова Н. С., Егоров А. В., Кулешевич Л. В., Кевлич В. И. Геохимия, геохронология цирконов и возраст архейской железорудной толщи Костомукшского зеленокаменного пояса Карельского кратона Фенноскандинавского Щита // Геохимия. 2021. T. 66. № 4. С. 291‒307. doi: 10.31857/S0016752521040063
  9. Слабунов А. И., Светов С. А., Степанова А. В., Медведев П. В., Полин А. К. Новая тектоническая карта Карелии: принципы построения и их реализация // Труды Карельского научного центра РАН. 2022. № 5. С. 132–138. doi: 10.17076/geo1690
  10. Костомукшский рудный район (геология, глубинное строение и минерагения). Отв. ред. Горьковец В. Я., Шаров Н. В. Петрозаводск. 2015. 322 c.
  11. Velivetskaya T., Ignatyev A., Reize M., Kiyashko S. Open tube combustion method of organic samples for stable carbon isotope analysis // Rapid communications in mass spectrometry. 2007. RCM. 21. 2451-5. 10.1002/rcm.3112.
  12. Ignatiev A. V., Velivetskaya T. A., Budnitskiy S. Y., Yakovenko V. V., Vysotskiy S. V., Levitskii V. I. Precision analysis of multisulfur isotopes in sulfides by femtosecond laser ablation GC–IRMS at high spatial resolution // Chemical Geology. V. 493. P. 316–326. doi: 10.1016/j.chemgeo.2018.06.006
  13. Ferrari A. S., Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon // Phys. Rev. 2000. B61. P. 14095–14107
  14. Schidlowski M. Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept // Precambrian Research. 2001. V. 106. № 1‒2. P. 117–134. https:// doi.o rg/ 10. 1016/S0301-9268(00) 00128-5.
  15. Farquhar J., Wing B. A., McKeegan K.D., Harris J. W., Cartigny P., Thiemens M. H. Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth // Science. 2002. V. 298. P. 2369–2372
  16. Ono S., Eigenbrode J. L., Pavlov A. A., Kharecha P., Rumble III D., Kasting J. F., Freeman K. H. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia // Earth and Planetary Science Letters. 2003. V. 213. № 1‒2. P. 15‒30.
  17. Farquhar J., Cliff J., Zerkle A. L., Harms B. Pathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes // PNAS. 2013. V. 110. P. 17638–17643.
  18. Leavitt W. D., Halevy I., Bradley A. S., Johnston D. T. Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record // PNAS. 2013. V. 110. P. 11244–11249.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scheme of the geological structure of the Kostomuksha greenstone belt and its position in the structure of the Fennoscandian Shield (after [8], with modifications). 1 - Caledonides, Baikalides and Neoproterozoic formations; 2 - Paleoproterozoic crust; 3 - Archean crust; 4 - Neoproterozoic (Riphean) lamproites and kimberlites; 5 - Paleoproterozoic (2.4 Ga) dolerites; 6 - Neoarchean (2.72–2.71 Ga) granites; 7 - Neoarchean 2.78 Ga granitoids of the TTG association; 8–2.75 Ga metagraywackes with BIF (Kostomuksha and Surlampinskaya suites of the Gimol series); 9–2.75 Ga sills and dikes of metarhyolites (Kostomuksha Formation); 10 – Mesoarchean (2.84–2.78 Ga) basalts and basalt-komatiites (Ruvinvaara Formation); 11 – Mesoarchean tuffs, tuffites, rhyolite-rhyodacites with interstices of BIF and carbonaceous shales (Šurlovar Formation); 12 – Mesoarchean basalts and komatiites (Niemijärvi Formation); 13–15 – faults: 13 – observed, 14 – inferred, 15 – thrusts; 16 – location of the Kostomuksha greenstone belt.

Baixar (47KB)
3. Fig. 2. Carbon-bearing substance (CM) in metapelites of the Neoarchean banded iron formation (BIF) of the Kostomuksha greenstone belt. a – a photo of a polished section of quartz-biotite schist in reflected electrons (SEM) and the position of CM (black areas) in the rock structure. According to electron microscopy (SEM), the carbonaceous substance forms crystalline forms (b), thin films (c), massive and layered packets (d). According to atomic force microscopy, massive packets are characterized by a denser packing of nanoparticles compared to layered ones (d). The Raman spectrum showed the presence of two types of graphite – with a poorly ordered structure (e) and crystalline (g). Mineral designations: Ap – apatite, C – graphite, Bt – biotite, Q – quartz, Po – pyrrhotite.

Baixar (81KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024