Rapakivi granites and associating magmatism during the Aptian development stage of the Siberian craton active continental margin (northeast Asia)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We present new data on the U–Th–Pb geochronology, mineralogy, geochemistry, and Sm-Nd and Rb-Sr isotopes for granitoids and associating subalkaline rocks of the Tarbagannakh pluton of the Allakh-Yun tectonic zone in the Verkhoyan fold-thrust belt. These rocks, including trachyandesibasalt dikes, combined into the Uemlyakh complex, were formed ca. 120 Ma from a continental crust source probably with input from and enriched mantle component. Rapakivi granites are reported for the first time in these intrusions – their origin is an important reference for understanding the geodynamic formation setting for this complex. We propose a tectonic model for the formation of these rocks due to slab break-off during the development of the active continental margin in the Aptian age. We discuss that this magmatism was conducive for the widespread development of metasomatic processes until the end of the Aptian age and was at the same time a source of gold mineralization of the overlapping Okhotsk-Koryak metallogenic belt.

Full Text

Restricted Access

About the authors

A. E. Vernikovskaya

Diamond and Precious Metal Geology Institute, Siberian Branch of the Russian Academy of Sciences; Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: matushkinny@ipgg.sbras.ru
Russian Federation, Yakutsk; Novosibirsk; Novosibirsk

V. Yu. Fridovsky

Diamond and Precious Metal Geology Institute, Siberian Branch of the Russian Academy of Sciences

Email: matushkinny@ipgg.sbras.ru

Corresponding Member of the RAS

Russian Federation, Yakutsk

N. V. Rodionov

A.P. Karpinsky Russian Geological Research Institute

Email: matushkinny@ipgg.sbras.ru
Russian Federation, St. Petersburg

N. Yu. Matushkin

Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Author for correspondence.
Email: matushkinny@ipgg.sbras.ru
Russian Federation, Novosibirsk; Novosibirsk

P. I. Kadilnikov

Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University

Email: matushkinny@ipgg.sbras.ru
Russian Federation, Novosibirsk; Novosibirsk

M. V. Kudrin

Diamond and Precious Metal Geology Institute, Siberian Branch of the Russian Academy of Sciences

Email: matushkinny@ipgg.sbras.ru
Russian Federation, Yakutsk

Ya. A. Tarasov

Diamond and Precious Metal Geology Institute, Siberian Branch of the Russian Academy of Sciences

Email: matushkinny@ipgg.sbras.ru
Russian Federation, Yakutsk

References

  1. Тектоника, геодинамика и металлогения территории Республики Саха (Якутия). Парфенов Л. М., Кузьмин М. И. (ред.) Москва: МАИК “Наука/Интерпериодика”, 2001. 571 с.
  2. Fridovsky V. Yu., Yakovleva K. Yu., Vernikovskaya A. E., Vernikovsky V. A., Matushkin N. Yu., Kadilnikov P. I., Rodionov N. V. Geodynamic emplacement setting of Late Jurassic dikes of the Yana-Kolyma gold belt, NE folded framing of the Siberian Craton: geochemical, petrologic, and U-Pb zircon data // Minerals. 2020. V. 10. No. 11. P. 1000. http://dx.doi.org/10.3390/min10111000
  3. Соколов С. Д. Очерк тектоники Северо-Востока Азии // Геотектоника. 2010. № 6. С. 60–78.
  4. Goryachev N. A., Pirajno F. Gold deposits and gold metallogeny of Far East Russia // Ore Geol. Rev. 2014. V. 59. P. 123–151. https://doi.org/10.1016/j.oregeorev.2013.11.010
  5. Чернышев И. В., Бахарев А. Г., Бортников Н. С., Гольцман Ю. В., Котов А. Б., Гамянин Г. Н., Чугаев А. В., Сальникова Е. Б., Баирова Э. Д. Геохронология магматических пород района золоторудного месторождения Нежданинское (Якутия, Россия): U-Pb, Rb-Sr и Sm-Nd-изотопные данные // Геология рудных месторождений. 2012. Т. 54. № 6. С. 487–512.
  6. Прокопьев А. В., Борисенко А. С., Гамянин Г. Н., Фридовский В. Ю., Кондратьева Л. А., Анисимова Г. С., Трунилина В. А., Васюкова Е. А., Иванов А. И., Травин А. В., Королева О. В., Васильев Д. А., Пономарчук А. В. Возрастные рубежи и геодинамические обстановки формирования месторождений и магматических образований Верхояно-Колымской складчатой области // Геология и геофизика. 2018. Т. 59. № 10. С. 1542–1563.
  7. Prokopiev A. V., Toro J., Hourigan J. K., Bakharev A. G., Miller E. L. Middle Paleozoic-Mesozoic boundary of the North Asian craton and the Okhotsk terrane: new geochemical and geochronological data and their geodynamic interpretation // Stephan Mueller Spec. Publ. Ser. 2009. V. 4. P. 71–84. https://doi.org/10.5194/smsps-4-71-2009
  8. Государственная геологическая карта Российской Федерации масштаба 1:1000000 (Третье поколение). Верхояно-Колымская серия. Васькин А. Ф., Казакова Г. Г., Кропачев А. П., Прокопьев А. В., Щербаков О.И Лист Р-54 (Оймякон). Санкт-Петербург: Картографическая фабрика ВСЕГЕИ, 2013.
  9. Rämö O. T., Haapala I. Rapakivi granites // Precambrian Geology of Finland – Key to the Evolution of the Fennoscandian Shield. Eds.; Lehtinen M., Nurmi RA., Rämö O. T., Elsevier B. V., Amsterdam. 2005. P. 533–562.
  10. Wernick E. Arc-related rapakivi granites from the Ribeira fold belt, SE Brazil // Revista Brasileira de Geociências. 2000. V. 30. № 1. P. 020–024. doi: 10.25249/0375–7536.2000301020024
  11. Гринберг Г. А., Бахарев А. Г., Гамянин Г. Н., Нухтинский Г. Г., Недосекин Ю. Д. Гранитоиды Южного Верхоянья. Москва: Наука, 1970.
  12. Frost B. R., Barnes C. G., Collins W. J., Arculus R. J., Ellis D. J., Frost C. D. A geochemical classification for granitic rocks // J. Petrol. 2001. V. 42. № 11. P. 2033–2048. https://doi.org/10.1093/petrology/42.11.2033
  13. McLemore V.T., Ramo O. T., Kosunen P. J., Heizler M., Haapala I., McKee C. Geology and geochemistry of Proterozoic granitic and mafic rocks in the Redrock area, northern Burro Mountains, Grant County, New Mexico – A progress report // New Mex. Geol. Soc. 51st Annual Fall Field Conference Guidebook. 2000. P. 117–126. https://doi.org/10.56577/FFC-51.117
  14. Calzia J. P., Rämö O. T. Miocene rapakivi granites in the southern Death Valley region, California, USA // Earth Sci. Rev. 2005. V. 73. № 1, P. 221–243. https://doi.org/10.1016/j.earscirev.2005.07.006
  15. Whalen J. B., Hildebrand R. S. Trace element discrimination of arc, slab failure, and A-type granitic rocks // Lithos. 2019. V. 348–349. 105179. https://doi.org/10.1016/j.lithos.2019.105179
  16. Evensen N. M., Hamilton P. S., O’Nions R. K. Rare-earth abundances in chondritic meteorites // Geochim. Cosmochim. Acta. 1978. V. 42. № 8. P. 1199–1212. https://doi.org/10.1016/0016–7037(78)90114-X
  17. McDonough W.F., Sun S.-S. The composition of the Earth // Chemical Geology. 1995. V. 120. № 3–4. P. 223– 253. https://doi.org/10.1016/0009-2541(94)00140-4
  18. Rudnik R. L., Gao S. The Composition of the Continental Crust // Treatise on Geochemistry, The Crust, 1st. Ed.; Holland H. D., Turekian K. K., Eds., Elsevier-Pergamon: Oxford, UK. 2003. V. 3. P. 1–64. https://doi.org/10.1016/B0–08–043751–6/03016–4
  19. Sun S.-S., McDonough W. F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes // Geol. Soc. Lond. Spec. Publ. 1989. V. 42. P. 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
  20. Zindler A., Hart S. R. Chemical Geodynamics // Ann. Rev. Earth Planet. Sci. 1986. V. 14, P. 493–571. https://doi.org/10.1146/annurev.ea.14.050186.002425

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Regional position of the Tarbagannakh massif in the structure of the Verkhoyansk-Chukotka folded region and the South Verkhoyansk sector of the VSNBP, compiled using [1, 4]. Letter abbreviations – tectonic sutures: P – Polousno-Kolyma, Yu – South-Anyui, M – Koni-Murgal, N – Novosibirsk-Kolyma, B – Bilyakchan; faults: T – Adycha-Taryn; tectonic zones of the South Verkhoyansk segment: K – Kyllakh, S – Sette-Daban, A – Allah-Yun.

Download (151KB)
3. Fig. 2. Scheme of the geological structure of the Tarbagannakh massif, compiled using [8, 11].

Download (104KB)
4. Fig. 3. Rare earth element distribution spectra (a) and spider diagrams (b) for the rocks of the Tarbagannakh massif. 1 – monzodiorites and transitional varieties from monzonite to quartz monzodiorites sometimes with rapakivi structure, 2 – granodiorites with rapakivi structure, 3 – granite with rapakivi structure, 4 – basaltic trachyandesites, 5 – subalkaline leucocratic granite. Element contents are normalized to chondrite according to [16] and to the primitive mantle according to [17]. The content lines of the upper (UCC) and lower (LCC) continental crust are given according to [18]. The content line of ocean island basalts (OIB) is given according to [19].

Download (45KB)
5. Fig. 4. Concordia diagrams and cathodoluminescence (CL) images of zircons from intrusive rocks of the Tarbagannakh massif (a) sample TBG-8–21 of quartz monzonite and (b) sample TBG-2–21 of granodiorite. Circles with numbers are analytical points. Numbers are age (million years).

Download (92KB)
6. Fig. 5. Isotope correlation diagram εNd(T)—(87Sr/86Sr)0 according to [20] for igneous rocks of the Uemlyakh complex of the Allah-Yun tectonic zone using the data from Table 2. Mantle sources by isotope characteristics: DM – depleted mantle, EM I and EM II – enriched mantle, HIMU – mantle with a high U/Pb ratio, PREMA – prevailing or weakly depleted mantle and BSE – bulk silicate Earth. Colored symbols – sample numbers (note to Table 2).

Download (23KB)

Copyright (c) 2024 Russian Academy of Sciences