The environment of the upper Kama region during the late glacial and early Holocene as revealed by the study of bottom sediments from lake Novozhilovo

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For the first time, a high-resolution record of natural events covering the Late Glacial and Early Holocene (14 150–9 730 cal BP) was obtained for the southern part of the Kama-Vychegda watershed based on drilling sediments in lake Novozhilovo (Kama-Keltma lowland, Upper Kama basin). The article presents the results of the study on the reconstruction of sedimentation conditions, based on paleobotanical, sedimentological and radiocarbon dating analyses. The beginning of the lake's formation was apparently preceded by a period of predominantly alluvial morpholithogenesis, which is thought to correspond to the LGM. There were four stages in the evolution of the lake basin, with the first three characterized by lacustrine-alluvial sedimentation that was predominantly mineralogenic in nature, and the fourth stage marked by typical lacustrine organic-rich sedimentation. The first stage covered the Bølling-Allerød interstadial period from 14 150 to 13 500 cal BP, and it was characterized by the accumulation of sand under conditions of high water flow. At the boundary between the Allerød and Younger Dryas periods, bioproductivity increased significantly. During the second stage, which lasted from 13 500 to 12 420 cal BP, water exchange slowed down and organic-mineral lake sediment formed. The third stage, known as the transitional sedimentation period, refers to the Younger Dryas and Early Holocene periods (12 420–10 700 cal BP). During this time, alluvial inputs predominated, with a decrease in organic matter content. Finally, the fourth stage, the eutrophic lake stage (10 700–9 730 cal BP), was characterized by a high organic matter content in sediment, and an increase in the size of silty particles.

Full Text

Restricted Access

About the authors

S. V. Kopytov

Perm State University; Perm State Humanitarian Pedagogical University

Author for correspondence.
Email: sergkopytov@gmail.com
Russian Federation, Perm; Perm

N. E. Zaretskaya

Institute of Geography, Russian Academy of Sciences; Geological Institute, Russian Academy of Sciences

Email: sergkopytov@gmail.com
Russian Federation, Moscow; Moscow

Е. А. Konstantinov

Institute of Geography, Russian Academy of Sciences

Email: sergkopytov@gmail.com
Russian Federation, Moscow

E. G. Lapteva

Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences; Perm State Humanitarian Pedagogical University

Email: sergkopytov@gmail.com
Russian Federation, Yekaterinburg; Perm

P. Yu. Sannikov

Perm State University

Email: sergkopytov@gmail.com
Russian Federation, Perm

N. V. Sychev

Institute of Geography, Russian Academy of Sciences

Email: sergkopytov@gmail.com
Russian Federation, Moscow

Е. А. Mekhonoshina

Perm State University

Email: sergkopytov@gmail.com
Russian Federation, Perm

References

  1. Квасов Д. Д. Позднечетвертичная история крупных озер и внутренних морей Восточной Европы. Л.: Наука, 1975. 280 с.
  2. Назаров Н. Н., Копытов С. В., Жуйкова И. А., Чернов А. В. Плейстоценовые каналы стока в южной части Кельтминской ложбины (Камско-Вычегодское междуречье) // Геоморфология. 2020. № 4. С. 74–88. https://doi.org/10.31857/S0435428120040070
  3. Panin A. V., Astakhov V. I., Lotsari E., Komatsu G., Lang J., Winsemann J. Middle and Late Quaternary glacial lake-outburst floods, drainage diversions and reorganization of fluvial systems in northwestern Eurasia // Earth-Science Reviews. 2020. Vol. 201. 103069. https://doi.org/10.1016/j.earscirev.2019.103069
  4. Lysa A., Larsen E., Buylaert J.-P., Fredin O., Jensen M., Kuznetsov D. Late Pleistocene stratigraphy and sedimentary environments of the Severnaya Dvina-Vychegda region in northwestern Russia // Boreas. 2014. Vol. 43. P. 759–779. https://doi.org/10.1111/bor.12080
  5. Зарецкая Н. Е., Панин А. В., Голубева Ю. В., Чернов А. В. Седиментационные обстановки и геохронология перехода от позднего плейстоцена к голоцену в долине р. Вычегда // ДАН. Сер. Геология. 2014. Т. 455. №1. с. 52–57. https://doi.org/10.7868/S0869565214070238
  6. Zaretskaya N. E., Panin A. V., Utkina A. O., Baranov D. V. Aeolian sedimentation in the Vychegda river valley, north-eastern Europe, during MIS 2–1 // Quaternary International. 2024. P. 83–89. https://doi.org/10.1016/j.quaint.2023.05.022
  7. Зилинг Д. Г., Капитанова К. В., Кулагин С. И., Галушкин Ю. А., Симонов А. Н., Корганова Л. С. Отчет о результатах инженерно-геологических исследований, проведенных Камской партией в зоне проектируемого Верхне-Камского водохранилища (на участке от с. Бондюг до с. Гайны) в 1958–59 гг. М.: Мингео СССР, 1960. 830 с.
  8. Lapteva E. G., Zaretskaya N. E., Lychagina E. L., Trofimova S. S., Demakov D. A., Kopytov S. V., Chernov A. V. Holocene vegetation dynamics, river valley evolution and human settlement of the upper Kama valley, Ural region, Russia // Vegetation History and Archaeobotany. 2023. Vol. 32. P. 361–385. https://doi.org/10.1007/s00334-023-00913-5
  9. Reimer P., Austin W. E. N., Bard E. et al. The IntCal20 Northern Hemisphere radiocarbon age calibrationcurve (0–55 cal kBP) // Radiocarbon. 2020. Vol. 62. No. 4. P. 725–757. https://doi.org/10.1017/RD C.2020.41
  10. Heiri O., Lotter A. F., Lemcke G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results // J. Paleolimnol. 2001. No. 25. P. 101–110. https://doi.org/10.1023/A:1008119611481
  11. Maher B. A. Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications // Palaeogeography, Palaeoclimatology, Palaeoecology. 1998. Vol. 137 (1–2). P. 25–54. https://doi.org/10.1016/S0031-0182(97)00103-X
  12. Battarbee R. W., Jones V. J., Flower R. J. Diatoms // Tracking Environmental Change Using Lake Sediments. Terrestrial, Algal and Siliceous Indicators. 2001. Vol. 3. P. 155–202.
  13. Куликовский М. С., Глущенко А. М., Генкал С. И., Кузнецова И. В. Определитель диатомовых водорослей России. Ярославль: Филигрань, 2016. 804 с.
  14. Чернова Г. М. Спорово-пыльцевой анализ отложений плейстоцена-голоцена. СПб.: Изд-во СПбГУ, 2004. 128 с.
  15. Prentice C., Guiot J., Huntley B. et al. Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka // Climate Dynamics. 1996. Vol. 12. P. 185–194. https://doi.org/10.1007/BF00211617
  16. Белецкая Н. П. Генетическая классификация озерных котловин Западно-Сибирской равнины // Геоморфология. 1987. № 1. С. 50–58.
  17. Маркова А. К., Кольфсхотен Т., Симакова А. Н., Пузаченко А. Ю., Белоновская Е. А. Экосистемы Европы в период позднеледникового потепления бёллинг-аллерёд (10.9–12.4 тыс. лет назад) по палинологическим и териологическим данным // Известия РАН. Сер. геогр. 2006. № 1. С. 15–25.
  18. Panin A. V., Matlakhova E. Yu. Fluvial chronology in the East European Plain over the last 20ka and its palaeohydrological implications // Catena. 2015. Vol. 130. P. 46–61. https://doi.org/10.1016/j.catena.2014.08.016
  19. Садоков Д. О., Сапелко Т. В., Бобров Н. Ю., Меллес М., Федоров Г. Б. Позднеледниковая и раннеголоценовая история озерного осадконакопления на севере Молого-Шекснинской низменности на примере озера Белого (Северо-Запад России) // Вестник СПбГУ. Науки о Земле. 2022. Т. 67. Вып. 2. С. 266–298. https://doi.org/10.21638/spbu07.2022.204
  20. Палеоклиматы и палеоландшафты внетропического пространства Северного полушария. Поздний плейстоцен – голоцен. Атлас-монография / А. А. Величко, О. К. Борисова, В. П. Гричук и др.; отв. ред. А. А. Величко. М.: ГЕОС, 2009. 119 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The area of ​​work and the location of the drilled wells a – the location of the study area on the map of the East European Plain; b – the Kama-Vychegda watershed; c – the location of the drilled wells on Lake Novozhilovo. Legend: 1 – the boundaries of the Kadamsky expansion in the Vychegda valley; 2 – the contour of the Kama-Keltminskaya lowland; 3 – measured depths of the lake, m; 4 – the location of the NZH-1 well

Download (481KB)
3. Fig. 2. Depth-age model and sediment accumulation rate, exposed by borehole NZH-1. a – depth-age model graph; sedimentation rate dependences: b – on calendar age; c – on depth

Download (93KB)
4. Fig. 3. Structure, composition and age of bottom sediments of Lake Novozhilovo. a – calibrated radiocarbon dates; b – lithological column NZH-1; c – particle size distribution; g – median particle diameter; d – loss on ignition at 550 C; e – specific magnetic susceptibility measured at low frequency (500 Hz). Legend: 1 – brown, weakly consolidated sapropel (layer 1); 2 – dense, greenish-yellowish sapropel (layer 2); 3 – gray, brownish-gray, mineralized sapropel (layer 3); 4 – sand (layer 4); 5 – plant remains; 6 – peat interlayers. Granulometric fractions, µm: 7 – <2 (clay); 8 – 2–4 (very fine silt); 9 – 4–8 (fine silt); 10 – 8–16 (medium silt); 11 – 16–31 (coarse silt); 12 – 31–63 (very coarse silt); 13 – 63–125 (very fine sand); 14 – 125–250 (fine sand); 15 – 250–500 (medium sand); 16 – 500–1000 (coarse sand)

Download (382KB)
5. Fig. 4. Spore-pollen diagram of the NZH-1 borehole sediments. Legend: 1 – conifer stomata findings; Biomes: 2 – tundra; 3 – steppe; 4 – taiga

Download (465KB)

Note

Presented by Academician of the RAS S.A. Dobrolyubov July 2, 2024


Copyright (c) 2025 Russian Academy of Sciences