Middle to late quaternary stratigraphy and sedimentation paleoenvironment of the norwegian sea based on a paleomarker
- Authors: Novichkova E.A.1, Demina L.L.1, Starodymova D.P.1, Matul A.G.1, Kravchishina M.D.1, Chehovskaia M.P.1, Oskina N.S.1, Lozinskaia L.A.1, Slomnyuk S.V.1, Solomatina A.S.1, Iakimova K.S.1
-
Affiliations:
- Shirshov Institute оf Oceanology, Russian Academy of Sciences
- Issue: Vol 519, No 1 (2024)
- Pages: 427-435
- Section: STRATIGRAPHY
- Submitted: 04.06.2025
- Published: 20.12.2024
- URL: https://edgccjournal.org/2686-7397/article/view/682428
- DOI: https://doi.org/10.31857/S2686739724110068
- ID: 682428
Cite item
Abstract
A complex of sedimentological, geochemical and micropaleontological methods was used to study and compare five new sediment cores on a submeridional profile from the middle to the north of the Norwegian Sea. A combined analysis of the distribution of ice-rafted debris, polar/subpolar foraminifera, calcium carbonate, organic carbon and continuous geochemical scanning records revealed an alternation of mid to late Late Quaternary glacial and interglacial intervals during the last 260,000 years. In the Late Middle Pleistocene glaciation (MIS 6, 8), the supply of terrigenous material had a much greater influence on regional sedimentation than in the Late Pleistocene ((MIS 2-4) Local (between the center and north of the Norwegian Sea) differences in glacial and interglacial sedimentation are shown.
About the authors
E. A. Novichkova
Shirshov Institute оf Oceanology, Russian Academy of Sciences
Author for correspondence.
Email: enovichkova@mail.ru
Russian Federation, Moscow
L. L. Demina
Shirshov Institute оf Oceanology, Russian Academy of Sciences
Email: enovichkova@mail.ru
Russian Federation, Moscow
D. P. Starodymova
Shirshov Institute оf Oceanology, Russian Academy of Sciences
Email: enovichkova@mail.ru
Russian Federation, Moscow
A. G. Matul
Shirshov Institute оf Oceanology, Russian Academy of Sciences
Email: enovichkova@mail.ru
Russian Federation, Moscow
M. D. Kravchishina
Shirshov Institute оf Oceanology, Russian Academy of Sciences
Email: enovichkova@mail.ru
Russian Federation, Moscow
M. P. Chehovskaia
Shirshov Institute оf Oceanology, Russian Academy of Sciences
Email: enovichkova@mail.ru
Russian Federation, Moscow
N. S. Oskina
Shirshov Institute оf Oceanology, Russian Academy of Sciences
Email: enovichkova@mail.ru
Russian Federation, Moscow
L. A. Lozinskaia
Shirshov Institute оf Oceanology, Russian Academy of Sciences
Email: enovichkova@mail.ru
Russian Federation, Moscow
S. V. Slomnyuk
Shirshov Institute оf Oceanology, Russian Academy of Sciences
Email: enovichkova@mail.ru
Russian Federation, Moscow
A. S. Solomatina
Shirshov Institute оf Oceanology, Russian Academy of Sciences
Email: enovichkova@mail.ru
Russian Federation, Moscow
K. S. Iakimova
Shirshov Institute оf Oceanology, Russian Academy of Sciences
Email: enovichkova@mail.ru
Russian Federation, Moscow
References
- Лисицын А.П. Современные представления об осадкообразовании в океанах и морях. Океан как природный самописец взаимодействия геосфер Земли / Мировой океан. Т. II. Физика, химия и биология океана. Осадкообразование в океане и взаимодействие геосфер Земли. Под общ. ред. чл.-корр. РАН Л.И. Лобковского и академика Р.И. Нигматулина. Москва: Научный мир, 2014. C. 331–571.
- Матуль А.Г., Новичкова Е.А., Чеховская М.П., и др. Сравнение природных условий последнего межледниковья и голоцена в Лофотенской котловине (Норвежское море) // Океанология. 2024. Т. 64. № 6. С. 869–876.
- Bauch H.A., Erlenkeuser H. Interpreting glacial-interglacial changes in ice volume and climate from subarctic deep water foraminiferal δ18O / Earth’s Climate and Orbital Eccentricity: The Marine Isotope Stage 11 Question, Geophysics Monography Series. Droxler A.W., Poore R.Z., Burckle L.H. (eds.). Washington, D.C.: American Geophysical Union, 2003. V. 137. P. 87–102.
- Blindheim J., Rey F. Water-mass formation and distribution in the Nordic Seas during the 1990s // ICES Journal of Marine Science. 2004. № 61. P. 846–863.
- Bruvoll V., Breivik A. J., Mjelde R., et al. Burial of the Mohn-Knipovich seafloor spreading ridge by the Bear Island Fan: Time constraints on tectonic evolution from seismic stratigraphy // Tectonics. 2009. V. 28. N 4. TC4001.
- Consolaro C., Rasmussen T.L., Panieri G. Palaeoceanographic and environmental changes in the eastern Fram Strait during the last 14,000 years based on benthic and planktonic foraminifera // Marine Micropaleontology. 2018. № 139. P. 84–101.
- Demina L.L., Novichkova E.A., Lisitsyn A.P., et al. Geochemical signatures of paleoclimate changes in the sediment cores from the Gloria and Snorri Drifts (Northwest Atlantic) over the Holocene-Mid Pleistocene // Geosciences. 2019. № 9. P. 432.
- Funk J.A., von Dobeneck T., Reitz A. Integrated rock magnetic and geochemical quantification of redoxomorphic iron mineral diagenesis in Late Quaternary sediments from the Equatorial Atlantic / The South Atlantic in the Late Quaternary. Wefer G., Mulitza S., Ratmeyer V. (eds). Berlin, Heidelberg: Springer, 2003. P. 237–260.
- Hemming S.R. Heinrich events: Massive Late Pleistocene detritus layers of the North Atlantic and their global climate imprint // Reviews of Geophysics. 2004. V. 42. P. 1–43.
- Jakobsson M., Andreassen K., Bjarnadóttir L.R., et al. Arctic Ocean glacial history // Quaternery Science Reviews. 2014. № 92. P. 40-67.
- Jarvis I., Murphy A.M., Gale A.S. Geochemistry of pelagic and hemipelagic carbonates: criteria for identifying system tracts and sea-level change // Journal of Geological Society. 2001. № 158. P. 685‒696.
- Johnson J.E., Phillips S.C., Clyde W.C., et al. Isolating detrital and diagenetic signals in magnetic susceptibility records from methane-bearing marine sediments //Geochemistry, Geophysics, Geosystems. 2021. № 22. P. 21.
- Kylander M.E., Ampel L., Wohlfarth, B., et al. High- resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: new insights from chemical proxies // Journal of Quaternary Science. 2011. № 26. P. 109–117.
- Nees S., Struck U. The biostratigraphic and paleoceanographic significance of Siphotextularia rolshauseni Phleger and Parker in Norwegian-Greenland Sea sediments // Journal of Foraminiferal Research. 1994. № 24. P. 233–240.
- Nizou J., Hanebuth T.J.J., Vogt C. Deciphering signals of late Holocene fluvial and aeolian supply from a shelf sediment depocenter off Senegal (north-west Africa) // Journal of Quaternary Science. 2011. № 26. P. 411–421.
- Olsen, L., Sveian, H., Bergstrøm, B., et al. Quaternary glaciations and their variations in Norway and on the Norwegian continental shelf // NGE. 2013. P. 27–78.
- Rudnick R. L., Gao S. Composition of the continental crust / Treatise on Geochemistry. Holland H.D., Turekian K.K. (eds.). Amsterdam: Elsevier Pergamon, 2004. V. 3. P. 1–64.
- Sabine M., Eynaud F., Zaragosi S., et al. Stratigraphy in the Greenland/Iceland/Norwegian (GIN) Seas: A multiproxy approach on Pleistocene sediments // Stratigraphy & Timescales. 2022. № 7. P. 37–80.
- Sayago-Gil M., López-González N., Long D., et al. Multi-proxy approach for identifying Heinrich events in sediment cores from Hatton Bank (NE Atlantic Ocean) // Geosciences. 2020. № 10. P. 1–24.
- Winkelmann D., Schafer C., Stein R., et al. Terrigenous events and climate history of the Sophia Basin, Arctic Ocean // Geochemistry, Geophysics, Geosystems. 2008. № 9.
Supplementary files
