New data on the age of Ta-Nb mineralization from the Uuksu rare-metal-granite dike complex (Salmi batholith, Karelia)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This work presents new data on rare-metal topaz-“zinnwaldite” granite dikes of the Salmi anorthosite-rapakivigranite complex of rocks. The isotopic age of Ta–Nb mineralization: the columbite-(Fe) – tantalite-(Fe) series and tapiolite was determined by the U–Pb method (ID-TIMS, 1541±2.5 Ma). Conclusions are given about the age limitations of the associated rocks, intersected by similar dikes, and the discreteness of the rare-metal magmatism manifestation in the studied area.

Full Text

Restricted Access

About the authors

A. A. Konyshev

Karelian Scientific Center, Russian Academy of Sciences

Author for correspondence.
Email: icelopa@gmail.com

Institute of Geology

Russian Federation, Petrozavodsk

N. G. Rizvanova

Institute of Geology and Geochronology of the Precambrian, Russian Academy of Sciences

Email: icelopa@gmail.com
Russian Federation, St. Petersburg

N. A. Sergeeva

Institute of Geology and Geochronology of the Precambrian, Russian Academy of Sciences

Email: icelopa@gmail.com
Russian Federation, St. Petersburg

References

  1. Shapovalov Yu. B., Chevychelov V. Yu., Korzhinskaya V. S., Kotova N. P., Redkin A. F., Konyshev A. A. Physical and Chemical Parameters of Processes Producing Rare-Me-tal Deposits in Granitoid Systems with Fluorine: Experimental Data // Petrology. 2019. V. 27. № 6. P. 567–584. http://doi.org/10.1134/S0869591119060067
  2. Ларин А. М. Граниты рапакиви и ассоциирующие породы. СПб.: Наука, 2011. 402 с.
  3. Konyshev A. A., Chevychelov V.Y., Shapovalov Y. B. Two Types of Highly Differentiated Topaz-Bearing Granites of the Salmi Batholith, Southern Karelia // Geochemica International. 2020. V. 58. № 1. P. 11–26. http://doi.org/10.1134/S0016702920010073
  4. Amelin Yu. V., Larin A. M., Tucker R. D. (1997) Chronology of multiphase emplacement of the Salmi rapakivi graniteanorthosite complex, Baltic Shield: implications for magmatic evolution // Contribution to Mineralogy and Petrology. 127 (4). 353–368. http://doi.org/10.1007/s004100050285
  5. Konyshev A. Natural Experiment on the Extraction and Quenching of Rapakivi-like Magmas: Traces of Interaction with the Mafic Melts and Their Derivatives, Salmi Batholith (Karelia, Russia) // Minerals. 2023. 13. 527. http://doi.org/10.3390/min13040527
  6. Konyshev A. A., Anosova M. O., Rusak A. A., Alekseev I. A., Yakushev A. I., Shapovalov Yu. B. Dikes of quartz porphyry and their role in the formation of the salmi batholith (South Karelia) // Doklady Earth Sciences. 2020. V. 491. Part 1. P. 127–130. http://doi.org/10.1134/S1028334X20030083
  7. Romer R. L., Smeds S. A. U–Pb columbite ages of pegmatites from Sveconorwegian terranes in southwestern Sweden // Precambrian Research. 1996. V. 76. Issues 1–2. P. 15–30. http://doi.org/10.1016/0301-9268(95)00023-2
  8. Romer R. L., Wrigh J. E. U–Pb dating of columbites: A geochronologic tool to date magmatism and ore deposits // Geochimica et Cosmochimica Acta. 1992. 56. 2137–214. http://doi.org/10.1007/s00710-016-0455-1
  9. Manhes G., Minster J. E., Allegre C. J. Comparative uranium–thorium lead and rubidium–strontium study of the Saint Severin amphoterite: concequences for early solar system chronology // Earth and Planetary Science Letters. 1978. V. 39. № 1. P. 14–27. http://doi.org/10.1134/S0869591114040067
  10. Ludwig K. R. PbDat for MS-DOS, version 1.21 // U. S. Geological survey open-file report. 88–542. 1991. 35 p.
  11. Ludwig K. R. Isoplot 3.70. A Geochronological Toolkit for Microsoft Excel. Vol. 4. // Berkeley Geochronology Center Special Publications. 2003. P. 70.
  12. McDonough W. F., Sun S. S. The composition of the Earth // Chemical Geology. 1995. V. 120. Issues 3–4. P. 223–253. http://doi.org/10.1016/0009-25419400140-4
  13. Irber W. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites // Geochimica et Cosmochimica Acta. 1999. V. 63. № 3–4. P. 489–508. http://doi.org/10.1524/zkri.1963.119.1-2.90
  14. Коваленко В. И., Коваленко Н. И. Онгониты – субвулканические аналоги редкометалльных литий-фтористых гранитов. М.: Наука, 1976. 129 с.
  15. Černy P., Ercit T. S. Some recent advances in the mineralogy and geochemistry of Nb and Ta in rare-element granitic pegmatites // Bulletin Minéralogie. 1985. V. 108. P. 499–532.
  16. Neymark L. A., Holm-Denoma C. S., Moscati R. J. In situ LA-ICPMS U–Pb dating of cassiterite without a known-age matrix-matched reference material: Examples from world-wide tin deposits spanning the Proterozoic to the Tertiary // Chemical Geology. 2018. V. 483. P. 410–425. http://doi.org/10.1016/j.chemgeo.2018.03.008
  17. Rizvanova N. G., Kuznetzov A. B. A new approach to ID-TIMS U–Pb dating of cassiterite by the example of the Pitkäranta tin deposit // Doklady Earth Sciences. 2020. V. 491. P. 146–149. http://doi.org/10.1134/S1028334X20030150
  18. Tapster S., Bright J. W. G. High-precision ID-TIMS cassiterite U–Pb systematics using a low-contamination hydrothermal decomposition: implications for LA-ICP-MS and ore deposit geochronology // Geochronology. 2020. V. 2. Issue 2. P. 425–441. http://doi.org/10.5194/gchron-2-425-2020
  19. Neymark L. A., Larin A. M., Moscati R. J. Pb-Pb and U–Pb dating of cassiterite by in situ LA-ICPMS: Example spanning ≈1.85 Ga to ≈100 Ma in Russia and implications for dating Proterozoic to Phanerozoic tin deposits // Minerals. 2021. 11. 1166. http://doi.org/10.3390/min11111166
  20. Amelin Y., Larin A. M. U–Pb and Sm-Nd zircon and garnet geochronology of scarn formation associated with rapakivi granite magmatism: an example of the Pitkäranta ore district, south-eastern Karelia / In: Anorthosites, rapakivi granites and related rocks // IGCP 290. Abstract, Montreal, Canada. 1994.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Images of typical grains of the series columbite-(Fe) – tantalite-(Fe) (a) and tapiolite (b), back-scattered electrons.

Download (78KB)
3. Fig. 2. Discrimination diagram for minerals of the columbite–tantalite–tapiolite series according to [15]. Circles – tapiolite, squares – tantalite, diamonds – columbite. Unfilled symbols – average compositions obtained for the inner and outer zones of the grain in Fig. 1a.

Download (127KB)
4. Fig. 3. Concordia diagram for tantalum niobates from sample AK310820-3.

Download (102KB)

Copyright (c) 2024 Russian Academy of Sciences