Palygorskite mineralization in the Induan sediments of the Moscow syneclise as an effect of regional and global paleogeographic change around the Permian-Triassic boundary

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The widespread occurrence of palygorskite is recorded throughout the territory of the Moscow syneclise in the Lower Triassic (Induan) – at the southeast (Vetluga-river basin), the northeast (Sukhona – Yug – Severnaya Dvina rivers basin) and the western part in the Gavrilov-Yam borehole at the beginning of the Triassic (Induan). Palygorskite is found in almost all types of Induan sediments and, together with smectites, is one of the main clay minerals, its maximum concentrations are measured in paleosols. The morphology of aggregates and the nature of their relationships with other sedimentary components indicate an autigenic origin. The presence of high-magnesian minerals (serpentine, Md-chlorite, talc-chlorite), that compose the clusts of meta-ultrabasites and being at least partially autogenous (Mg-chlorites) is associated with the palygorskite mineralization. The values of the Cr/Ni ratio (1.3–1.5) in the Induan sediments suggest active erosion of the ultrabasic complexes of the Urals at this time. During the transition across the Permian to Triassic in the Moscow syneclise, the ratio Σbases/Al in the continental sediments increases and the weathering index CALMAG decreases, which is consistent with the global climatic trend of warming and aridization at the Permian-Triassic transition over the word. The widespread occurrence of palygorskite in the lowest Lower Triassic of the Moscow syneclise was caused by increased delivery from the Urals of chemically unstable high-magnesian detrital material of ultrabasic rocks and products of their early metamorphism, as well as specifics of its processing (low mobility and high accumulation of leached components) by porous soil waters in continental environments with arid climate.

Full Text

Restricted Access

About the authors

M. P. Arefiev

Geological Institute, Russian Academy of Sciences

Author for correspondence.
Email: mihail-3000@inbox.ru
Russian Federation, Moscow

E. V. Shchepetova

Geological Institute, Russian Academy of Sciences

Email: mihail-3000@inbox.ru
Russian Federation, Moscow

E. V. Pokrovskaya

Geological Institute, Russian Academy of Sciences

Email: mihail-3000@inbox.ru
Russian Federation, Moscow

B. B. Shkurskii

Lomonosov Moscow State University

Email: mihail-3000@inbox.ru
Russian Federation, Moscow

N. G. Nurgalieva

Kazan Federal University

Email: mihail-3000@inbox.ru
Russian Federation, Kazan

G. A. Batalin

Kazan Federal University

Email: mihail-3000@inbox.ru
Russian Federation, Kazan

B. I. Gareev

Kazan Federal University

Email: mihail-3000@inbox.ru
Russian Federation, Kazan

References

  1. Арефьев М. П., Кулешов В. Н., Покровский Б. Г. Изотопный состав углерода и кислорода в континентальных карбонатах поздней перми и раннего триаса Русской плиты: глобальный экологический кризис на фоне меняющегося климата. // ДАН. 2015. Т. 460. № 2. С. 1–5.
  2. Арефьев М. П., Голубев В. К., Кулешов В. Н., Кухтинов Д. А., Миних А. В., Покровский Б. Г., Силантьев В. В., Урузаева М.Н., Шкурский Б. Б., Ярошенко О. П., Григорьева А. В., Наумчева М.А. Комплексная палеонтологическая, седиментологическая и геохимическая характеристика терминальных (вязниковских) отложений пермской системы северо-восточного борта Московской синеклизы. Статья 1. Бассейн М. Сев. Двины. // Бюлл. МОИП. Отд. геол. 2016. Т. 91. Вып. 1. С. 24–49.
  3. Верхнепермские и нижнетриасовые отложения Московской синеклизы. М.: Недра, 1984. 140 с.
  4. Годовиков А. А. Минералогия. М.: Недра, 1983. 647 с.
  5. Граница перми и триаса в континентальных сериях Восточной Европы / Отв. ред. В. Р. Лозовский, Н. К. Есаулова. М.: ГЕОС, 1998. 246 с.
  6. Дриц В. А., Коссовская А. Г. Глинистые минералы: слюды, хлориты // Тр. ГИН. Вып. 465. М.: Наука, 1991. 175 с.
  7. Кринари Г. А., Ольнева Т. В., Седов С. Н. Дисперсные силикаты в изолированных опресненных бассейнах аридных зон и седиментационная цикличность. // Литология и полез. ископаемые. 1999. № 1. С. 27–37.
  8. Лозовский В. Р., Ерощев-Шак В. А., Уранова О. В. Глинистые минералы нижнетриасовых континентальных образований осевой зоны Московской синеклизы. // Литология и полез. ископаемые. 1968. № 1. С. 136–139.
  9. Фетисова А. М., Веселовский Р. В., Голубев В. К., Арефьев М. П. Магнитостратиграфия границы перми и триаса нижнего течения р. Ветлуга (Восточно-Европейская платформа, Нижегородская область). // Физика Земли. 2024. № 3. С. 51–74.
  10. Чистякова А. В., Веселовский Р. В., Семёнова Д. В., Ковач В. П., Адамская Е. В., Фетисова А. М. Стратиграфическая корреляция пермо-триасовых разрезов Московской синеклизы: первые результаты U–Pb-датирования обломочного циркона // ДАН. 2020. Т. 492. № 1. С. 23–28.
  11. Arefiev M. P., Golubev V. K., Balabanov Yu. P. et al. Type and reference sections of the Permian–Triassic continental sequences of the East European Platform: main isotope, magnetic, and biotic events (XVIII International Congress on Carboniferous and Permian. Sukhona and Severnaya Dvina Rivers field trip) / Ed. A. S. Alekseev. Moscow, 2015. 104 p.
  12. Beaufort D., Baaronnet A., Lanson B., Meunier A. Corrensite: A single phase or a mixed-layer phyllosilicate in the saponite-to-chlorite conversion series? A case study of Sancerre-Couy deep drill hole (France) // American Miner. 1997. V. 62. P. 109‒124.
  13. Davydov V. I., Arefiev M. P., Golubev V. K., Karasev E. V., Naumcheva M. A., Schmitz M. D., Silantiev V. V., Zharinova V. V. Radioisotopic and biostratigraphic constraints on the classical Middle–Upper Permian succession and tetrapod fauna of the Moscow syneclise, Russia // Geology. 2020. V. 48. № 7. P. 742–747. https://doi.org/10.1130/G47172.1
  14. Garver J. I., Royce P. R., Smick T. A. Chromium and nickel in shale of the Taconic foreland: a case study for the provenance of fine-grained sediments with an ultramafic source // J. Sed. Res. 1996. V. 66. P. 100–106.
  15. Nordt L. C., Driese S. D. New weathering index improves paleorainfall estimates from мertisols // Geology. 2010. V. 38. № 5. P. 407–410.
  16. Rudnick R. L., Gao S. Composition of the Continental Crust / Treatise on Geochemistry. Volume 3: The Crust / Eds. H. D. Holland, K. K. Turekian. Pergamon, 2003. P. 1–64.
  17. Sheldon N.D., Tabor N.J. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols // Earth-Science Reviews. 2009. V. 95. P. 1–52.
  18. Sun Y., Joachimski M. M., Wignall P. B., Yan С., Chen Y., Jiang H., Lai H. Lethally hot temperatures during the Early Triassic greenhouse // Science. 2012. V. 338. P. 366–370.
  19. Taylor S. R., McLennan S. M. The Continental Crust: Its Composition and Evolution: an Examination of the Geochemical Record Preserved in Sedimentary Rocks. Oxford: Blackwell, 1985. 312 p.
  20. Wedepohl K. H. The composition of the continental crust // Geochimica et Cosmochimica Acta. 1995. V. 59(7). P. 1217–1232.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location of the studied Permian and Triassic sections. Legend: 1 - large settlements, 2 - outcrops, 3 - boundary of the Lower Triassic deposits (after [3] with clarifications). A - Vetluga River valley. Outcrops: 1 - Zubovskoye, observation point (op. pt.) 223; 2 - Bol. Sludka, op. pt. 108; 3 - Spasskoye, op. pt. 66; 4 - Shilikha, op. 100; 5 - Anisimovo, op. 70; 6 - Afanasikha, op. 166; 7 - Sarafanikha, op. 167; 8 - Prudovka, op. pt. 96; 9 - Astashikha, op. 98; 10 - Znamenskoye, so-called 97; 11 - Voskresenskoye, so-called 99; 12 - Bogorodskoye, so-called 95; 13 - Galibikha, so-called 93; 14 - Sukhoborka, so-called 94; 15 - Sosnovka, so-called 236. B - basins of the Sukhona River, Malaya Northern Dvina, Yug. Outcrops: 16 - Mutovino, so-called 28, 1350; 17 - Klimovo, so-called 37; 18 - Aristovo, so-called 42 - Kuzino, so-called 154 - Verkhneye Kuzino, so-called 158 - Balebikha, so-called 151; 19 – Sholga, point 4 – Purtovo, point 163; 20 – Ananyino, point 2; 21 – Nedubrovo, point 133; 22 – Kudrino, point 103; 23 – Vakhnevo, point 104 – Oksilovo, point 217. B – Yaroslavl region, Gavrilov-Yam, 24 – Gavrilov-Yam complex well.

Download (280KB)
3. Fig. 2. Correlation of Permian and Triassic outcrops in the Vetluga River valley. 1 – gravelstones, conglomerates, 2 – sands, 3 – clays, 4 – limestones, 5 – carbonate pedogenic nodules, 6–8 – polarity: 6 – normal, 7 – reversed, 8 – anomalous with low inclination [9]. Vuch. – Vuchapinsky stage; Byk. – Bykovsky horizon; ND – layers with Nedubrovskaya biota; * – thickness according to well drilling data [3, 5].

Download (513KB)
4. Fig. 3. Differences in associations of clay minerals of continental deposits of the Lower Triassic (a) and Upper Permian (b) in typical diffraction patterns of samples of the Severodvinsk group of outcrops: a, b – saturated with organic liquids for better resolution of diagnostic reflexes of minerals of the smectite group; c – calcined to clarify the diagnostics of chlorite.

Download (384KB)
5. Fig. 4. Differences in associations of clay minerals of continental deposits of the Lower Triassic (a) and Upper Permian (b) in typical diffraction patterns of samples from the Vetluzhskaya group of outcrops: a, c – saturated with organic liquids for better resolution of diagnostic reflexes of smectite group minerals; b, d – calcined to clarify the diagnostics of chlorites and serpentine.

Download (323KB)
6. Fig. 5. Palygorskite and associated high-magnesian minerals of the detrital fraction of Induan deposits (southeast of the MS, sections of the Vetluga River valley). a–b – tangled-fibrous aggregates of palygorskite (a – filling of soil pores, b – incrustations of the ped surface), Ryabinskaya member of the Vokhma suite, Afanasikha section, point 166 (layer 22); c–d – fragments of serpentinized ultramafic rocks, Vokhma subsuite, Spasskoye section, point 66 (layer 17). Numbers indicate points of analysis (see Table 1).

Download (381KB)
7. Fig. 6. Chromium and nickel content in Upper Permian and Lower Triassic deposits of the Vetluzhskaya group of sections. Legend for Fig. 2. Sampling levels are shown by circles to the right of the columns. Gray field – average Cr and Ni content in fine-grained sedimentary rocks (according to [19, 20, 16], etc.).

Download (451KB)
8. Fig. 7. Distribution of the values ​​of the lithochemical indices Cr/Ni, Σbases/Al and CALMAG in the Upper Permian and Lower Triassic deposits of the Vetluzhskaya group of sections. Legend to Fig. 2.

Download (451KB)

Copyright (c) 2024 Russian Academy of Sciences