Palygorskite mineralization in the Induan sediments of the Moscow syneclise as an effect of regional and global paleogeographic change around the Permian-Triassic boundary
- Authors: Arefiev M.P.1, Shchepetova E.V.1, Pokrovskaya E.V.1, Shkurskii B.B.2, Nurgalieva N.G.3, Batalin G.A.3, Gareev B.I.3
-
Affiliations:
- Geological Institute, Russian Academy of Sciences
- Lomonosov Moscow State University
- Kazan Federal University
- Issue: Vol 519, No 2 (2024)
- Pages: 97-109
- Section: PALEOGEOGRAPHY
- Submitted: 04.06.2025
- Published: 28.12.2024
- URL: https://edgccjournal.org/2686-7397/article/view/682455
- DOI: https://doi.org/10.31857/S2686739724120131
- ID: 682455
Cite item
Abstract
The widespread occurrence of palygorskite is recorded throughout the territory of the Moscow syneclise in the Lower Triassic (Induan) – at the southeast (Vetluga-river basin), the northeast (Sukhona – Yug – Severnaya Dvina rivers basin) and the western part in the Gavrilov-Yam borehole at the beginning of the Triassic (Induan). Palygorskite is found in almost all types of Induan sediments and, together with smectites, is one of the main clay minerals, its maximum concentrations are measured in paleosols. The morphology of aggregates and the nature of their relationships with other sedimentary components indicate an autigenic origin. The presence of high-magnesian minerals (serpentine, Md-chlorite, talc-chlorite), that compose the clusts of meta-ultrabasites and being at least partially autogenous (Mg-chlorites) is associated with the palygorskite mineralization. The values of the Cr/Ni ratio (1.3–1.5) in the Induan sediments suggest active erosion of the ultrabasic complexes of the Urals at this time. During the transition across the Permian to Triassic in the Moscow syneclise, the ratio Σbases/Al in the continental sediments increases and the weathering index CALMAG decreases, which is consistent with the global climatic trend of warming and aridization at the Permian-Triassic transition over the word. The widespread occurrence of palygorskite in the lowest Lower Triassic of the Moscow syneclise was caused by increased delivery from the Urals of chemically unstable high-magnesian detrital material of ultrabasic rocks and products of their early metamorphism, as well as specifics of its processing (low mobility and high accumulation of leached components) by porous soil waters in continental environments with arid climate.
Full Text

About the authors
M. P. Arefiev
Geological Institute, Russian Academy of Sciences
Author for correspondence.
Email: mihail-3000@inbox.ru
Russian Federation, Moscow
E. V. Shchepetova
Geological Institute, Russian Academy of Sciences
Email: mihail-3000@inbox.ru
Russian Federation, Moscow
E. V. Pokrovskaya
Geological Institute, Russian Academy of Sciences
Email: mihail-3000@inbox.ru
Russian Federation, Moscow
B. B. Shkurskii
Lomonosov Moscow State University
Email: mihail-3000@inbox.ru
Russian Federation, Moscow
N. G. Nurgalieva
Kazan Federal University
Email: mihail-3000@inbox.ru
Russian Federation, Kazan
G. A. Batalin
Kazan Federal University
Email: mihail-3000@inbox.ru
Russian Federation, Kazan
B. I. Gareev
Kazan Federal University
Email: mihail-3000@inbox.ru
Russian Federation, Kazan
References
- Арефьев М. П., Кулешов В. Н., Покровский Б. Г. Изотопный состав углерода и кислорода в континентальных карбонатах поздней перми и раннего триаса Русской плиты: глобальный экологический кризис на фоне меняющегося климата. // ДАН. 2015. Т. 460. № 2. С. 1–5.
- Арефьев М. П., Голубев В. К., Кулешов В. Н., Кухтинов Д. А., Миних А. В., Покровский Б. Г., Силантьев В. В., Урузаева М.Н., Шкурский Б. Б., Ярошенко О. П., Григорьева А. В., Наумчева М.А. Комплексная палеонтологическая, седиментологическая и геохимическая характеристика терминальных (вязниковских) отложений пермской системы северо-восточного борта Московской синеклизы. Статья 1. Бассейн М. Сев. Двины. // Бюлл. МОИП. Отд. геол. 2016. Т. 91. Вып. 1. С. 24–49.
- Верхнепермские и нижнетриасовые отложения Московской синеклизы. М.: Недра, 1984. 140 с.
- Годовиков А. А. Минералогия. М.: Недра, 1983. 647 с.
- Граница перми и триаса в континентальных сериях Восточной Европы / Отв. ред. В. Р. Лозовский, Н. К. Есаулова. М.: ГЕОС, 1998. 246 с.
- Дриц В. А., Коссовская А. Г. Глинистые минералы: слюды, хлориты // Тр. ГИН. Вып. 465. М.: Наука, 1991. 175 с.
- Кринари Г. А., Ольнева Т. В., Седов С. Н. Дисперсные силикаты в изолированных опресненных бассейнах аридных зон и седиментационная цикличность. // Литология и полез. ископаемые. 1999. № 1. С. 27–37.
- Лозовский В. Р., Ерощев-Шак В. А., Уранова О. В. Глинистые минералы нижнетриасовых континентальных образований осевой зоны Московской синеклизы. // Литология и полез. ископаемые. 1968. № 1. С. 136–139.
- Фетисова А. М., Веселовский Р. В., Голубев В. К., Арефьев М. П. Магнитостратиграфия границы перми и триаса нижнего течения р. Ветлуга (Восточно-Европейская платформа, Нижегородская область). // Физика Земли. 2024. № 3. С. 51–74.
- Чистякова А. В., Веселовский Р. В., Семёнова Д. В., Ковач В. П., Адамская Е. В., Фетисова А. М. Стратиграфическая корреляция пермо-триасовых разрезов Московской синеклизы: первые результаты U–Pb-датирования обломочного циркона // ДАН. 2020. Т. 492. № 1. С. 23–28.
- Arefiev M. P., Golubev V. K., Balabanov Yu. P. et al. Type and reference sections of the Permian–Triassic continental sequences of the East European Platform: main isotope, magnetic, and biotic events (XVIII International Congress on Carboniferous and Permian. Sukhona and Severnaya Dvina Rivers field trip) / Ed. A. S. Alekseev. Moscow, 2015. 104 p.
- Beaufort D., Baaronnet A., Lanson B., Meunier A. Corrensite: A single phase or a mixed-layer phyllosilicate in the saponite-to-chlorite conversion series? A case study of Sancerre-Couy deep drill hole (France) // American Miner. 1997. V. 62. P. 109‒124.
- Davydov V. I., Arefiev M. P., Golubev V. K., Karasev E. V., Naumcheva M. A., Schmitz M. D., Silantiev V. V., Zharinova V. V. Radioisotopic and biostratigraphic constraints on the classical Middle–Upper Permian succession and tetrapod fauna of the Moscow syneclise, Russia // Geology. 2020. V. 48. № 7. P. 742–747. https://doi.org/10.1130/G47172.1
- Garver J. I., Royce P. R., Smick T. A. Chromium and nickel in shale of the Taconic foreland: a case study for the provenance of fine-grained sediments with an ultramafic source // J. Sed. Res. 1996. V. 66. P. 100–106.
- Nordt L. C., Driese S. D. New weathering index improves paleorainfall estimates from мertisols // Geology. 2010. V. 38. № 5. P. 407–410.
- Rudnick R. L., Gao S. Composition of the Continental Crust / Treatise on Geochemistry. Volume 3: The Crust / Eds. H. D. Holland, K. K. Turekian. Pergamon, 2003. P. 1–64.
- Sheldon N.D., Tabor N.J. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols // Earth-Science Reviews. 2009. V. 95. P. 1–52.
- Sun Y., Joachimski M. M., Wignall P. B., Yan С., Chen Y., Jiang H., Lai H. Lethally hot temperatures during the Early Triassic greenhouse // Science. 2012. V. 338. P. 366–370.
- Taylor S. R., McLennan S. M. The Continental Crust: Its Composition and Evolution: an Examination of the Geochemical Record Preserved in Sedimentary Rocks. Oxford: Blackwell, 1985. 312 p.
- Wedepohl K. H. The composition of the continental crust // Geochimica et Cosmochimica Acta. 1995. V. 59(7). P. 1217–1232.
Supplementary files
