Seismotectonic model of Aketao earthquake focal zone 25.11.2016 Mw 6.6 (China)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The paper presents the results of modeling of the stress-strain state of the epicentral zone of the strong crustal earthquake Aketao, which occurred near Muji (China) on November 25, 2016 with magnitude Mw 6.6. The finite element method was used to model the stress-strain state of the epicentral zone with subsequent construction of stress intensity maps before and after the earthquake. The possibility to determine the location of rupture origin, its extent, including estimation of scalar seismic moment and earthquake magnitude is shown. For the first time the possibility to calculate the time function of seismic moment Mo(t) (seismic moment rate) based on the model of stress-strain state of rupture (earthquake origin) is presented, which allows to obtain synthetic seismograms and accelerograms of possible earthquake in the future.

Full Text

Restricted Access

About the authors

V. N. Morozov

Geophysical Center of the Russian Academy of Sciences

Email: a.manevich@gcras.ru
Russian Federation, Moscow

A. I. Manevich

Geophysical Center of the Russian Academy of Sciences; Mining Institute

Author for correspondence.
Email: a.manevich@gcras.ru
Russian Federation, Moscow; Moscow

References

  1. Морозов В. Н., Татаринов В. Н., Колесников И. Ю., Маневич А. И. Моделирование напряженно-деформированного состояния эпицентральной зоны сильного землетрясения в Иране (26 декабря 2003 г. Mw = 6.6) // Физика Земли. 2018. № 4. С. 68–78. http://doi.org/10.1134/S0002333718040087
  2. Морозов В. Н., Татаринов В. Н., Маневич А. И. Моделирование напряженно-деформированного состояния эпицентральной зоны сильного землетрясения в Турции (Измит, 1999 г., М 7.4) // Вулканология и сейсмология. 2020. № 2. С. 43–54. http://doi.org/10.31857/S0203030620020042
  3. Морозов В. Н., Маневич А. И., Татаринов В. Н. Ретроспективный прогноз места и интенсивности двух сильных коровых землетрясений в Иране и Индии // Вулканология и сейсмология. 2023. № 3. С. 69–78.http://doi.org/10.31857/S020303062370013X
  4. Ризниченко Ю. В. Размеры очага корового землетрясения и сейсмический момент // Исследования по физике землетрясений. М.: Наука, 1976. С. 9–27.
  5. Kanamori H., Brodsky E. E. The physics of earthquakes // Reports on Progress in Physics. 2004. V. 67(8). P. 1429–1496.http://doi.org/10.1088/00344885/67/8/R03
  6. Li J., Liu G., Qiao X., Xiong W., Wang X., Liu D., Sun J., Yushan A., Yusan S., Fang W., Wang Q. Rupture characteristics of the 25 November 2016 Aketao earthquake ( M w 6.6) in Eastern Pamir revealed by GPS and teleseismic data // Pure and Applied Geophysics. 2018. V. 175. P. 573–585.http://doi.org/10.1007/s00024-018-1798-9
  7. Feng W., Tian Y., Zhang Y., Samsonov S., Almeida R., Liu P. A slip gap of the 2016 M w 6.6 Muji, Xinjiang, China, earthquake inferred from Sentinel‐1 TOPS interferometry // Seismological Research Letters. 2017. V. 88(4). P. 1054–1064.http://doi.org/10.1785/0220170019
  8. Wang S., Xu C., Wen Y., Yin Z., Jiang G., Fang L. Slip Model for the 25 November 2016 M w 6.6 Aketao Earthquake, Western China, revealed by Sentinel-1 and ALOS-2 Observations // Remote Sensing. 2017. V. 9(4). Iss. 325.http://doi.org/10.3390/rs9040325
  9. Ma Y., Qiao X., Chen W., Zhou Y. Source model of 2016 M w 6.6 Aketao earthquake, Xinjiang derived from Sentinel-1 InSAR observation // Geodesy and Geodynamics. 2018. V. 9. Iss. 5. P. 372–377.http://doi.org/10.1016/j.geog.2018.05.001
  10. Li T., Schoenbohm L. M., Chen J., Yuan Z., Feng W., Li W., Xu J., Owen L. A., Sobel E. R., Zhang B., Zheng B., Zhang P. Cumulative and coseismic (during the 2016 M w 6.6 Aketao earthquake) deformation of the dextral-slip Muji fault, Northeastern Pamir orogen // Tectonics. 2019. V. 38. Iss. 11. P. 3975–3989. http://doi.org/10.1029/2019TC005680
  11. Anderson D. L., Witcomb J. H. The Dilatancy-diffusion model of earthquake prediction / Proc. Conf. of tectonic problems of the San Andreas fault systems. Stanf. Univ. Publ., 1973. XIII. P. 417.
  12. Kanamori H., Anderson L. Theoretical basis of some empirical relations in seismology // Bulletin of the Seismological Society of America. 1975. V. 65(5). P. 1073–1095.http://doi.org/10.1785/BSSA0650051073
  13. Kanamori H. The energy in great earthquakes // Journal of geophysical research. 1977. V. 82. № 20. P. 2981–2987.http://doi.org/10.1029/JB082i20p02981

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural and tectonic diagram of the Aketao earthquake region, compiled based on materials from [6, 8]. 1 – epicenter of the main shock with M 6.6; 2 – tectonic faults.

Download (371KB)
3. Fig. 2. Stress-strain state of the epicentral zone before the Aketao earthquake. a – stress intensity σi, MPa; b – ratio of the main acting stresses æ = σH / σh.

Download (316KB)
4. Fig. 3. Aftershocks of the Aketao earthquake according to data from [8]. a – graph of the distribution of aftershocks by depth (red dotted line – Gaussian function (1), for given parameters h0 = 10 km; b = 3 km; A = 1); b – distribution of aftershocks by depth along the rupture.

Download (115KB)
5. Fig. 4. Stress-strain state of the rupture. a – map of the difference in stresses ∆σi before and after the earthquake (stress drop); b – dropped stresses ∆τр along the fault surface after applying function (2); c – model of coseismic displacements obtained as a result of inversion of InSAR data [8].

Download (219KB)
6. Fig. 5. Results of seismic moment modeling. a – dropped stresses ∆τр, 2×2 km cell model and rupture propagation at a speed of 2.8 km/s; b – time function of seismic moment Мо(t), obtained on the basis of the results of SSS modeling (red line – averaged values); c – time function of seismic moment Мо(t), obtained on the basis of seismological data [6].

Download (194KB)

Copyright (c) 2024 Russian Academy of Sciences