Seismotectonic model of Aketao earthquake focal zone 25.11.2016 Mw 6.6 (China)
- Authors: Morozov V.N.1, Manevich A.I.1,2
-
Affiliations:
- Geophysical Center of the Russian Academy of Sciences
- Mining Institute
- Issue: Vol 519, No 2 (2024)
- Pages: 120-127
- Section: SEISMOLOGY
- Submitted: 04.06.2025
- Published: 28.12.2024
- URL: https://edgccjournal.org/2686-7397/article/view/682457
- DOI: https://doi.org/10.31857/S2686739724120155
- ID: 682457
Cite item
Abstract
The paper presents the results of modeling of the stress-strain state of the epicentral zone of the strong crustal earthquake Aketao, which occurred near Muji (China) on November 25, 2016 with magnitude Mw 6.6. The finite element method was used to model the stress-strain state of the epicentral zone with subsequent construction of stress intensity maps before and after the earthquake. The possibility to determine the location of rupture origin, its extent, including estimation of scalar seismic moment and earthquake magnitude is shown. For the first time the possibility to calculate the time function of seismic moment Mo(t) (seismic moment rate) based on the model of stress-strain state of rupture (earthquake origin) is presented, which allows to obtain synthetic seismograms and accelerograms of possible earthquake in the future.
Keywords
Full Text

About the authors
V. N. Morozov
Geophysical Center of the Russian Academy of Sciences
Email: a.manevich@gcras.ru
Russian Federation, Moscow
A. I. Manevich
Geophysical Center of the Russian Academy of Sciences; Mining Institute
Author for correspondence.
Email: a.manevich@gcras.ru
Russian Federation, Moscow; Moscow
References
- Морозов В. Н., Татаринов В. Н., Колесников И. Ю., Маневич А. И. Моделирование напряженно-деформированного состояния эпицентральной зоны сильного землетрясения в Иране (26 декабря 2003 г. Mw = 6.6) // Физика Земли. 2018. № 4. С. 68–78. http://doi.org/10.1134/S0002333718040087
- Морозов В. Н., Татаринов В. Н., Маневич А. И. Моделирование напряженно-деформированного состояния эпицентральной зоны сильного землетрясения в Турции (Измит, 1999 г., М 7.4) // Вулканология и сейсмология. 2020. № 2. С. 43–54. http://doi.org/10.31857/S0203030620020042
- Морозов В. Н., Маневич А. И., Татаринов В. Н. Ретроспективный прогноз места и интенсивности двух сильных коровых землетрясений в Иране и Индии // Вулканология и сейсмология. 2023. № 3. С. 69–78.http://doi.org/10.31857/S020303062370013X
- Ризниченко Ю. В. Размеры очага корового землетрясения и сейсмический момент // Исследования по физике землетрясений. М.: Наука, 1976. С. 9–27.
- Kanamori H., Brodsky E. E. The physics of earthquakes // Reports on Progress in Physics. 2004. V. 67(8). P. 1429–1496.http://doi.org/10.1088/00344885/67/8/R03
- Li J., Liu G., Qiao X., Xiong W., Wang X., Liu D., Sun J., Yushan A., Yusan S., Fang W., Wang Q. Rupture characteristics of the 25 November 2016 Aketao earthquake ( 6.6) in Eastern Pamir revealed by GPS and teleseismic data // Pure and Applied Geophysics. 2018. V. 175. P. 573–585.http://doi.org/10.1007/s00024-018-1798-9
- Feng W., Tian Y., Zhang Y., Samsonov S., Almeida R., Liu P. A slip gap of the 2016 6.6 Muji, Xinjiang, China, earthquake inferred from Sentinel‐1 TOPS interferometry // Seismological Research Letters. 2017. V. 88(4). P. 1054–1064.http://doi.org/10.1785/0220170019
- Wang S., Xu C., Wen Y., Yin Z., Jiang G., Fang L. Slip Model for the 25 November 2016 6.6 Aketao Earthquake, Western China, revealed by Sentinel-1 and ALOS-2 Observations // Remote Sensing. 2017. V. 9(4). Iss. 325.http://doi.org/10.3390/rs9040325
- Ma Y., Qiao X., Chen W., Zhou Y. Source model of 2016 6.6 Aketao earthquake, Xinjiang derived from Sentinel-1 InSAR observation // Geodesy and Geodynamics. 2018. V. 9. Iss. 5. P. 372–377.http://doi.org/10.1016/j.geog.2018.05.001
- Li T., Schoenbohm L. M., Chen J., Yuan Z., Feng W., Li W., Xu J., Owen L. A., Sobel E. R., Zhang B., Zheng B., Zhang P. Cumulative and coseismic (during the 2016 6.6 Aketao earthquake) deformation of the dextral-slip Muji fault, Northeastern Pamir orogen // Tectonics. 2019. V. 38. Iss. 11. P. 3975–3989. http://doi.org/10.1029/2019TC005680
- Anderson D. L., Witcomb J. H. The Dilatancy-diffusion model of earthquake prediction / Proc. Conf. of tectonic problems of the San Andreas fault systems. Stanf. Univ. Publ., 1973. XIII. P. 417.
- Kanamori H., Anderson L. Theoretical basis of some empirical relations in seismology // Bulletin of the Seismological Society of America. 1975. V. 65(5). P. 1073–1095.http://doi.org/10.1785/BSSA0650051073
- Kanamori H. The energy in great earthquakes // Journal of geophysical research. 1977. V. 82. № 20. P. 2981–2987.http://doi.org/10.1029/JB082i20p02981
Supplementary files
