Study of the influence of fillers on the wettibility and cytotoxicity of polysiloxane films for medical use

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A method for synthesis of two new types of polysiloxane-based films is proposed: with introduced chitosan and with introduced sodium bicarbonate with its subsequent removal. It was found that the obtained films have a branched internal structure of channels suitable for further filling with biologically active substances. The study of the hydrophobicity of the obtained films, in comparison with pure polysiloxane films, showed an insignificant (no more than 6%) decrease in the equilibrium wetting edge angle, as well as equalization of its values from the outer and inner sides, compared with films without modification. A comprehensive in vitro study demonstrated the promising use of polysiloxane films with introduced chitosan, since they do not have a reliable toxic effect on the studied cells. Films of pure polysiloxane and polysiloxane with the use of sodium hydrogen carbonate had a toxic effect on the investigated cells and acidified the medium. All samples were found to be non-adhesive to cells.

全文:

受限制的访问

作者简介

А. Baikin

A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: baikinas@mail.ru
俄罗斯联邦, 119334, Moscow

E. Nasakina

A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: baikinas@mail.ru
俄罗斯联邦, 119334, Moscow

G. Davydova

Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences

Email: baikinas@mail.ru
俄罗斯联邦, 142290, Pushchino

M. Sudarchikova

A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: baikinas@mail.ru
俄罗斯联邦, 119334, Moscow

A. Melnikova

A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: baikinas@mail.ru
俄罗斯联邦, 119334, Moscow

K. Sergienko

A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: baikinas@mail.ru
俄罗斯联邦, 119334, Moscow

S. Konushkin

A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: baikinas@mail.ru
俄罗斯联邦, 119334, Moscow

M. Kaplan

A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: baikinas@mail.ru
俄罗斯联邦, 119334, Moscow

M. Sevostyanov

A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences; All-Russian Research Institute of Phytopathology

Email: baikinas@mail.ru
俄罗斯联邦, 119334, Moscow; 143050, Bolshiye Vyazemy, Moscow Region

A. Kolmakov

A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences

Email: baikinas@mail.ru

Corresponding Member of the RAS

俄罗斯联邦, 119334, Moscow

参考

  1. World Health Organization // https://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death (ссылка активна на 17.04.2024).
  2. Grüntzig A. // Lancet. 1978. V. 1. № 8058. P. 263.
  3. Anqiang S., Wang Z., Fan Z., Tian X., Zhan F., Deng X., Liu X. // Med. Eng. Phys. 2015 V. 37. P. 840–844. http s://doi.org/10.1016/j.medengphy.2015.05.016
  4. Sommer C., Gockner T., Stampfl U., Bellemann N., Sauer P., Ganten T., Weitz J., Kauczor H., Radeleff B. // Eur. J. Radiol. 2012. V. 81. P. 2273–2280. http s://doi.org/10.1016/j.ejrad.2011.06.037
  5. Doshi R., Shah J., Jauhar V., Decter D., Jauhar R., Meraj P. // Heart Lung. 2018. V. 47. № 3. P. 231–236. http s://doi.org/10.1016/j.hrtlng.2018.02.004
  6. Wawrzyńska M., Arkowski J., Włodarczak A., Kopaczyńska M., Biały D. Development of drug-eluting stents (DES). In: Functionalised Cardiovascular Stents, Ch. 3. Wall J.G., Podbielska H., Wawrzyńska M. (Eds.). Woodhead Publishing, 2018. P. 45–56. http s://doi.org/10.1016/B978-0-08-100496-8.00003-2
  7. Julio C., Palmaz M.D. // J. Vasc. Interv. Radiol. 2002. V. 13. № 2. P. 272–274. http s://doi.org/10.1016/S1051-0443(02)70172-3
  8. Kraak R., Grundeken M., Koch K., Winter R., Wykrzykowska J. // Expert Rev. Med. Devices. 2014. V. 11. № 5. P. 467–480. http s://doi.org/10.1586/17434440.2014.941812
  9. Dong J., Pacella M., Liu Y., Zhao L. // Bioact. Mater. 2022. V. 10. P. 159–184. http s://doi.org/10.1016/j.bioactmat.2021.08.023
  10. Mirhosseini N., Lin L., Liu Z., Mamas M., Fraser D., Wang T. // Heliyon. 2024. V. 10. № 5. e26425. http s://doi.org/10.1016/j.heliyon.2024.e26425
  11. Toong D.W.Y., Ng J.C.K., Huang Y., Wong P.E.H., Leo H.L., Venkatraman S.S., Ang H.Y. // Materialia. 2020. V. 12. 100727. http s://doi.org/10.1016/j.mtla.2020.100727
  12. Rocher L., Cameron J., Barr J., Dillon B., Lennon A., Menary G. // Eur. Polym. J. 2023. V. 195. 112205. http s://doi.org/10.1016/j.eurpolymj.2023.112205
  13. Li F., Gu Y., Hua R., Ni Z., Zhao G. // J. Drug Delivery Sci. Technol. 2018. V. 48. P. 88–95. http s://doi.org/10.1016/j.jddst.2018.08.026
  14. Liang J.J., Sio T.T., Slusser J.P. // JACC: Cardiovascular Interventions. 2014. V. 7. № 12. P. 1412–1420. http s://doi.org/10.1016/j.jcin.2014.05.035
  15. Arzhakova O.V., Arzhakov M.S., Badamshina E.R., Bryuzgina E.B., Bryuzgin E.V., Bystrova A.V., Vaganov G.V., Vasilevskaya V.V., Vdovichenko A Yu., Gallyamov M.O., Gumerov R.A., Didenko A.L., Zefirov V.V., Karpov S.V., Komarov P.V., Kulichikhin V.G., Kurochkin S.A., Larin S.V., Malkin A.Ya., Milenin S.A., Muzafarov A.M., Molchanov V.S., Navrotskiy A.V., Novakov I.A., Panarin E.F., Panova I.G., Potemkin I.I., Svetlichny V.M., Sedush N.G., Serenko O.A., Uspenskii S.A., Philippova O.E., Khokhlov A.R., Chvalun S.N., Sheiko S.S., Shibaev A.V., Elmanovich I.V., Yudin V.E., Yakimansky A.V., Yaroslavov A.A. // Russ. Chem. Rev. 2022. V. 91. № 12. RCR5062. http s://doi.org/10.57634/RCR5062
  16. Ferruti P., Bianchi S., Ranucci E., Chiellini F., Piras A. // Biomacromolecules. 2005. V. 6. № 4. P. 2229–2235. http s://doi.org/10.1021/bm050210+
  17. Rezapour-Lactoee A., Yeganeh H., Nasser Ostad S., Gharibi R., Mazaheri Z., Ai J. // Mater. Sci. Eng. 2016. V. 69. P. 804–814. http s://doi.org/10.1016/j.msec.2016.07.067
  18. Баикин А.С., Насакина Е.О., Мельникова А.А., Михайлова А.В., Каплан М.А., Сергиенко К.В., Конушкин С.В., Колмаков А.Г., Севостьянов М.А. // Перспективные материалы. 2023. № 10. С. 17–25. http s://doi.org/10.30791/1028-978X-2023-10-17-25
  19. Neslihan K., Aytekin A.Ö. Chitosan nanogel for drug delivery and regenerative medicine. In: Polysaccharide Hydrogels for Drug Delivery and Regenerative Medicine, Ch. 14. Giri Tapan K., Ghosh B., Badwaik H. (Eds.). Elsevier, 2024. P. 215–232. http s://doi.org/10.1016/B978-0-323-95351-1.00018-1
  20. Farnoush S.R., Sharifianjazi F., Esmaeilkhanian A., Salehi E. // Carbohydr. Polym. 2021. V. 273. 118631. http s://doi.org/10.1016/j.carbpol.2021.118631
  21. ГОСТ Р ИСО 10993.5-11 «Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 5. Исследование на цитотоксичность: методы in vitro».
  22. ГОСТ Р ИСО 10993.12-15 «Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 12. Приготовление проб и стандартные образцы».
  23. Poltavtseva R.A., Pavlovich S.V., Klimantsev I.V., Tyutyunnik N.V., Grebennik T.K., Nikolaeva A.V., Sukhikh G.T., Nikonova Y.A., Selezneva I.I., Yaroslavtseva A.K., Stepanenko V.N., Esipov R.S. // Bull. Exp. Biol. Med. 2014. V. 158. P. 164–169. http s://doi.org/10.1007/s10517-014-2714-7
  24. Baikin A.S., Nasakina E.O., Melnikova A.A., Mikhailova A.V., Kaplan M.A., Sergienko K.V., Konushkin S.V., Kolmakov A.G., Sevostyanov M.A. // Inorg. Mater: Appl. Res. 2024. V. 15. № 2. P. 352–357. http s://doi.org/ 10.1134/S2075113324020060
  25. Polyzois G.L., Hensten-Pettersen A., Kullman // J. Prosthet. Dent. 1994. V. 71. № 5. P. 505–510. http s://doi.org/10.1016/0022-3913(94)90191-0
  26. Shirosaki Y., Tsukatani Y., Okamoto K., Hayakawa S., Osaka A. // Pharmaceutics. 2022. V. 14. № 5. 1111. http s://doi.org/10.3390/pharmaceutics14051111

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. SEM image of a section of polysiloxane films: without the use of fillers [24] (a), made using sodium bicarbonate (b) [24], made using chitosan (c).

下载 (239KB)
3. Fig. 2. Determination of the contact angle of polysiloxane films: without filler (a), produced using sodium bicarbonate (b), produced using chitosan (c).

下载 (230KB)
4. Fig. 3. Metabolic activity of NCTC L929 cells according to the results of the MTT test during incubation for 24 hours with 3-day extracts from polysiloxane films: made using chitosan (sample 1) without the use of fillers (sample 2), made using sodium bicarbonate (sample 3).

下载 (65KB)
5. Fig. 4. Appearance of mesenchymal stem cells (MSC) from human dental pulp (clone Th44) during incubation on the material 24 hours after seeding. Samples of polysiloxane films: made using chitosan (sample 1), without fillers (sample 2), made using sodium bicarbonate (sample 3). Sample K – Control. Stained with SYTO 9 (a), Hoechst 33342 (b) and PI (c). Scale bar 100 μm.

下载 (368KB)

版权所有 © Russian Academy of Sciences, 2024