COMPANION MATRIX FOR SUPERPOSITION OF POLYNOMIALS AND ITS APPLICATION TO KNOT THEORY
- 作者: Mednykh A.D1,2, Mednykh I.A1,2, Sokolova G.K1,2,3
 - 
							隶属关系: 
							
- Sobolev Institute of Mathematics
 - Novosibirsk State University
 - Novosibirsk State Technical University
 
 - 期: 卷 521 (2025)
 - 页面: 72-80
 - 栏目: MATHEMATICS
 - URL: https://edgccjournal.org/2686-9543/article/view/683153
 - DOI: https://doi.org/10.31857/S2686954325010096
 - EDN: https://elibrary.ru/BSQEBP
 - ID: 683153
 
如何引用文章
详细
The note provides a new formula for the companion matrix of the superposition of two polynomials over a commutative ring. The results obtained are used to provide a constructive proof of Plans’ theorem for two-bridge knots, which states that the first homology group of an odd-sheeted cyclic covering of a three-dimensional sphere branched over a given knot is the direct sum of two copies of some Abelian group. A similar result is also true for the homology of even-sheeted coverings factored by the reduced homology group of a two-sheeted covering. The structure of the above mentioned Abelian groups is described through Chebyshev polynomials of the second and fourth kind.
			                作者简介
A. Mednykh
Sobolev Institute of Mathematics; Novosibirsk State University
														Email: smedn@mail.ru
				                					                																			                												                								Novosibirsk, Russia						
I. Mednykh
Sobolev Institute of Mathematics; Novosibirsk State University
														Email: ilyamednykh@mail.ru
				                					                																			                												                								Novosibirsk, Russia						
G. Sokolova
Sobolev Institute of Mathematics; Novosibirsk State University; Novosibirsk State Technical University
														Email: g.sokolova@g.nsu.ru
				                					                																			                												                								Novosibirsk, Russia						
参考
- Bini D.A., Pan V.Y. Polynomial and Matrix Computations // Fundamental Algorithms. Birkhauser. Boston. MA. 1994. V. 1.
 - Davis P.J. Circulant Matrices. New York: AMS Chelsea Publishing. 1994.
 - Noferini V., Williams G. Matrices in companion rings, Smith forms, and the homology of 3-dimensional Brieskorn manifolds // J. Algebra. 2021. V 587. P. 1-19. https://doi.org/10.1016/j.jalgebra.2021.07.018
 - Plans A. Aportacion al estudio de los grupos de homologia de los recubrimientos ciclicos ramificados correspondiente a un nudo // Rev. R. Acad. Cienc. Exactas, Fis. Nat. Madr. 1953. V. 47. P. 161-193.
 - Del Val P., Weber C. Plans’ theorem for links // Topol. Appl. 1990. V. 34. P. 247-255. https://doi.org/10.1016/0166-8641(90)90041-Y
 - Gordon C. McA. A short proof of a theorem of Plans on the homology of the branched cyclic coverings of a knot // Bull. Amer. Math. Soc. 1971. V. 168. P. 85-87. https://doi.org/10.1090/S0002-9904-1971-12611-3
 - Stevens W.H. On the Homology of Branched Cyclic Covers of Knots // LSU Historical Dissertations and Theses. 1996. doi: 10.31390/gradschool_disstheses.6282
 - Vaserstein L.N., Wheland E. Commutators and Companion Matrices over Rings of Stable Rank 1 // Linear Algebra Appl. 1990. V. 142. P. 263-277. doi: 10.1016/0024-3795(90)90270-M
 - Brand L. The companion matrix and its properties // Amer. Math. Monthly. 1964. V. 71. N. 6. P. 629-634. doi: 10.1080/00029890.1964.11992294
 - Lancaster P., Tismenetsky M. The Theory of Matrices. Second Edition with Applications. San Diego: Academic press. 1985.
 - Mason J.C., Handscomb D.C. Chebyshev Polynomials. Boca Raton: CRC Press, 2003.
 - Nakanishi Y., Suketa M. Alexander polynomials of two-bridge knots // J. Austral. Math. Soc. (Series A). 1996. V. 60. P. 334-342. https://doi.org/10.1017/S1446788700037848
 - Murasugi K. On the Alexander polynomial of the alternating knot // Osaka J. Math. 1958. V. 10. P. 181-189.
 - Hartley R.I. On two-bridged knot polynomials // J. Austral. Math. Soc. (Series A). 1979. V. 28. P. 241-249. https://doi.org/10.1017/S1446788700015743
 - Schubert H. Knoten mit zwei Bracken // Math. Z. 1956. V. 65. V. P. 133-170.
 - Cattabriga A., Mulazzani M. Strongly-cyclic branched coverings of (1, 1)-knots and cyclic presentations of groups // Math. Proc. Cambridge Phil. Soc. 2003. V. 135. N. 1. P. 137-146. https://doi.org/10.1017/S0305004103006686
 - Fox R.H. Free Differential Calculus III. Subgroups // Ann. Math. 1956. V. 64 N. 3. P. 407-419.
 - Mednykh I.A. Homology group of branched cyclic covering over a 2-bridge knot of genus two. Preprint. 2021. arXiv:2111.04292 [math.CO].
 - Seifert H. Uber das Geschlecht von Knoten // Math. Ann. 1934. V. 110. P. 571-592.
 - Kutateladze S.S. Fundamentals of functional analysis. Netherlands: Springer Science and Business Media, 2013.
 - Reidemeister K. Knotentheorie. New York: Chelsea Pub. Co., NewYork, 1948.
 - Raymond Lickorish W.B. An Introduction to Knot Theory. New York: Springer, 1997.
 
补充文件
				
			
						
						
						
						
					


