ПОСТРОЕНИЕ ГЛАДКИХ ДУГ “ИСТОЧНИК-СТОК” В ПРОСТРАНСТВЕ ДИФФЕОМОРФИЗМОВДВУМЕРНОЙСФЕРЫ
- Авторы: Ноздринова Е.В.1, Починка О.В.1, Цаплина Е.В.1
 - 
							Учреждения: 
							
- Национальный исследовательский университет “Высшая школа экономики”
 
 - Выпуск: Том 519 (2024)
 - Страницы: 39-45
 - Раздел: МАТЕМАТИКА
 - URL: https://edgccjournal.org/2686-9543/article/view/648004
 - DOI: https://doi.org/10.31857/S2686954324050081
 - EDN: https://elibrary.ru/XDNVBT
 - ID: 648004
 
Цитировать
Полный текст
Аннотация
Хорошо известно, что группа классов отображений двумерной сферы 
			                Ключевые слова
Об авторах
Е. В. Ноздринова
Национальный исследовательский университет “Высшая школа экономики”
														Email: maati@mail.ru
				                					                																			                												                								Нижний Новгород, Россия						
О. В. Починка
Национальный исследовательский университет “Высшая школа экономики”
														Email: olga-pochinka@yandex.ru
				                					                																			                												                								Нижний Новгород, Россия						
Е. В. Цаплина
Национальный исследовательский университет “Высшая школа экономики”
														Email: ktsaplina11@mail.ru
				                					                																			                												                								Нижний Новгород, Россия						
Список литературы
- Munkres J. Differentiable isotopies on the 2sphere // Michigan Mathematical Journal. 1960. V. 7. № 3. P. 193–197.
 - Palis J., Pugh C. Fifty problems in dynamical systems // Dynamical Systems—Warwick 1974: Proceedings of a Symposium Held at the University of Warwick 1973/74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. P. 345–353.
 - Newhouse S., Palis J., Takens F. Stable arcs of diffeomorphisms // Bull. Amer. Math. Soc. 1976. V. 82. № 3. P. 499–502.
 - Medvedev T. V., Nozdrinova E., Pochinka O. Components of Stable Isotopy Connectedness of Morse ”— Smale Diffeomorphisms // Regular and Chaotic Dynamics. 2022. V. 27. № 1. P. 77–97.
 - Grines V. Z., Medvedev T. V., Pochinka O. V. Dynamical systems on 2-and 3-manifolds // Cham: Springer. 2016. V. 46.
 - Bonatti C., Grines V. Z., Medvedev V. S., Pochinka O. V. Bifurcations of Morse-Smale diffeomorphisms with wildly embedded separatrices // Proceedings of the Steklov Institute of Mathematics. 2007. V. 256. P. 47–61.
 - Милнор Дж. Теорема об ℎ-кобордизме. 1969.
 - Banyaga A. On the structure of the group of equivariant diffeomorphisms // Topology. 1977. V. 16. № 3. P. 279–283.
 - Rolfsen D. Knots and links // American Mathematical Soc., 2003. P. 346.
 - Lickorish W. B. R. Homeomorphisms of nonorientable two-manifolds // Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge University Press, 1963. V. 59. № 2. P. 307–317.
 - Косневски Ч. Начальный курс алгебраической топологии // М.: Изд-во Мир. 1983. Т. 304.
 - Hirsch M. W. Differential topology // Springer Science Business Media, 2012. V. 33.
 - Franks J. Necessary conditions for stability of diffeomorphisms // Transactions of the American Mathematical Society. 1971. V. 158. № 2. P. 301–308.
 - Gourmelon N. A Franks’ lemma that preserves invariant manifolds // Ergodic Theory and Dynamical Systems. 2016. V. 36. № 4. P. 1167–1203
 - Палис Ж., Ди Мелу В. Геометрическая теория динамических систем. 1986.
 
Дополнительные файлы
				
			
						
						
						
					
						
									



