Максимальные индуцированные деревья в разреженных случайных графах
- Авторы: Буитраго Оропеса Х.К.1
 - 
							Учреждения: 
							
- Московский физико-технический институт (национальный исследовательский университет)
 
 - Выпуск: Том 516 (2024)
 - Страницы: 83-86
 - Раздел: МАТЕМАТИКА
 - URL: https://edgccjournal.org/2686-9543/article/view/647969
 - DOI: https://doi.org/10.31857/S2686954324020133
 - EDN: https://elibrary.ru/XHSTXC
 - ID: 647969
 
Цитировать
Полный текст
Аннотация
Мы доказали, что для любого и , максимальный размер индуцированного дерева в биномиальном случайном графе сконцентрирован в двух последовательных значениях с вероятностью, стремящейся к 1, при .
Ключевые слова
Полный текст
Об авторах
Х. К. Буитраго Оропеса
Московский физико-технический институт (национальный исследовательский университет)
							Автор, ответственный за переписку.
							Email: buitrago.okh@phystech.edu
				                					                																			                								
кафедра дискретной математики, лаборатория продвинутой комбинаторики и сетевых приложений
Россия, Долгопрудный, Московская облаcтьСписок литературы
- Bollobás B. Random Graphs. 2nd ed. Cambridge University Press, 2001.
 - Janson S., Luczak T., Ruciński A. Random Graphs. New York: Wiley, 2000.
 - Жуковский М.Е., Райгородский А.М. Случайные графы: модели и предельные характеристики // Успехи математических наук. 2015. T. 70. № 1. С. 35–88.
 - Деревянко Н.М., Киселев С.Г. Числа независимости случайных подграфов некоторого дистанционного графа // Проблемы передачи информации. 2017. Т. 53. № 4. С. 307–318.
 - Егорова А.Н., Жуковский М.Е. Опровержение закона нуля или единицы для экзистенциальных монадических свойств разреженного биномиального случайного графа // Доклады Академии наук. Т. 99. № 1. С. 68–70.
 - Ostrovsky L.B., Zhukovskii M.E. Monadic second-order properties of very sparse random graphs // Annals of Pure and Applied Logic. 2017. V. 168. N 11. P. 2087–2101.
 - Bollobás B., Erdös P. Cliques in random graphs // Math. Proc. Camb. Phil. Soc. 1976. V. 80. P. 419–427.
 - Matula D. The largest clique size in a random graph // Tech. Rep. Dept. Comp. Sci. Dallas, Texas: Southern Methodist University, 1976.
 - Krivelevich M., Sudakov B., Vu V.H., Wormald N.C. On the probability of independent sets in random graphs // Random Structures & Algorithms. 2003. V. 22. N 1. P. 1–14.
 - Fountoulakis N., Kang R.J., McDiarmid C. Largest sparse subgraphs of random graphs // European Journal of Combinatorics. 2014. V. 35. P. 232–244.
 - Balogh J., Zhukovskii M. On the sizes of large subgraphs of the binomial random graph // Discrete Mathematics. 2022. V. 345. N 2. 112675. ISSN 0012-365X.
 - Kamaldinov D., Skorkin A., Zhukovskii M. Maximum sparse induced subgraphs of the binomial random graph with given number of edges // Discrete Mathematics. 2021. V. 344. N 2. 112205. ISSN 0012-365X.
 - Krivoshapko M., Zhukovskii M. Maximum induced forests in random graphs // Discrete Applied Mathematics. 2021. V. 305. P. 211–213.
 - Bohman T., Hofstad J. Two-Point Concentration of the Independence Number of the Random Graph // 2022. arXiv:2208.00117.
 - Moon J.W. Counting Labelled Trees. Canadian Mathematical Monograph. 1970.
 - Bohman T., Warnke L., Zhu E. Two-point concentration of the domination number of random graphs // 2024. arXiv:2401.10486.
 
Дополнительные файлы
				
			
						
						
						
					
						
									



